1
|
Han J, Jiang S, Zhou Z, Lin M, Wang J. Artificial Proteins Designed from G3LEA Contribute to Enhancement of Oxidation Tolerance in E. coli in a Chaperone-like Manner. Antioxidants (Basel) 2023; 12:1147. [PMID: 37371877 DOI: 10.3390/antiox12061147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
G3LEA is a family of proteins that exhibit chaperone-like activity when under distinct stress. In previous research, DosH was identified as a G3LEA protein from model extremophile-Deinococcus radiodurans R1 with a crucial core HD domain consisting of eight 11-mer motifs. However, the roles of motifs participating in the process of resistance to stress and their underlying mechanisms remain unclear. Here, eight different proteins with tandem repeats of the same motif were synthesized, named Motif1-8, respectively, whose function and structure were discussed. In this way, the role of each motif in the HD domain can be comprehensively analyzed, which can help in finding possibly crucial amino acid sites. Circular dichroism results showed that all proteins were intrinsically ordered in phosphate buffer, and changed into more α-helical ordered structures with the addition of trifluoroethanol and glycerol. Transformants expressing artificial proteins had significantly higher stress resistance to oxidation, desiccation, salinity and freezing compared with the control group; E. coli with Motif1 and Motif8 had more outstanding performance in particular. Moreover, enzymes and membrane protein protection viability suggested that Motif1 and Motif8 had more positive influences on various molecules, demonstrating a protective role in a chaperone-like manner. Based on these results, the artificial proteins synthesized according to the rule of 11-mer motifs have a similar function to wildtype protein. Regarding the sequence in all motifs, there are more amino acids to produce H bonds and α-helices, and more amino acids to promote interaction between proteins in Motif1 and Motif8; in addition, considering linkers, there are possibly more amino acids forming α-helix and binding substrates in these two proteins, which potentially provides some ideas for us to design potential ideal stress-response elements for synthetic biology. Therefore, the amino acid composition of the 11-mer motif and linker is likely responsible for its biological function.
Collapse
Affiliation(s)
- Jiahui Han
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shijie Jiang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhengfu Zhou
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Lin
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Hernández-Sánchez IE, Maruri-López I, Martinez-Martinez C, Janis B, Jiménez-Bremont JF, Covarrubias AA, Menze MA, Graether SP, Thalhammer A. LEAfing through literature: late embryogenesis abundant proteins coming of age-achievements and perspectives. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6525-6546. [PMID: 35793147 DOI: 10.1093/jxb/erac293] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.
Collapse
Affiliation(s)
- Itzell E Hernández-Sánchez
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Israel Maruri-López
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Coral Martinez-Martinez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Brett Janis
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, 78216, San Luis Potosí, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, Mexico
| | - Michael A Menze
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Anja Thalhammer
- Department of Physical Biochemistry, University of Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
3
|
Furuki T, Takahashi Y, Hatanaka R, Kikawada T, Furuta T, Sakurai M. Group 3 LEA Protein Model Peptides Suppress Heat-Induced Lysozyme Aggregation. Elucidation of the Underlying Mechanism Using Coarse-Grained Molecular Simulations. J Phys Chem B 2020; 124:2747-2759. [PMID: 32192343 DOI: 10.1021/acs.jpcb.9b11000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated experimentally whether a short peptide, PvLEA-22, which consists of two tandem repeats of an 11-mer motif of Group 3 late embryogenesis abundant proteins, has a chaperone-like function for denatured proteins. Lysozyme was selected as a target protein. Turbidity measurements indicated that the peptide suppresses the heat-induced aggregation of lysozyme when added at a molar ratio of PvLEA-22/lysozyme >40. Circular dichroism and differential scanning calorimetry measurements confirmed that the lysozyme was denatured on heating but spontaneously refolded on subsequent cooling in the presence of the peptide. As a result, up to 80% of the native catalytic activity of lysozyme was preserved. Similar chaperone-like activity was also observed for a peptide with the same amino acid composition as PvLEA-22 but whose sequence is scrambled. To elucidate the underlying mechanism of the chaperone function of these peptides, we performed coarse-grained molecular dynamics simulations. This revealed that a denatured lysozyme molecule is shielded by several peptide molecules in aqueous solution, which acts as a physical barrier, reducing the opportunities for collision between denatured proteins. An important finding was that a peptide bound to the denatured protein is very rapidly replaced by another; due to such rapid exchange, peptide-protein contact time is very short, that is, on the order of ∼200 ns. Therefore, the peptide does not constrain the behavior of the denatured protein, which can refold freely.
Collapse
Affiliation(s)
- Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Yuta Takahashi
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Rie Hatanaka
- Molecular Biomimetics Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba 305-8634 Japan
| | - Takahiro Kikawada
- Molecular Biomimetics Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization, Ohwashi 1-2, Tsukuba 305-8634 Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-62, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
4
|
A LEA model peptide protects the function of a red fluorescent protein in the dry state. Biochem Biophys Rep 2018; 17:27-31. [PMID: 30519646 PMCID: PMC6259040 DOI: 10.1016/j.bbrep.2018.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 01/18/2023] Open
Abstract
We tested whether a short model peptide derived from a group 3 late embryogenesis abundant (G3LEA) protein is able to maintain the fluorescence activity of a red fluorescent protein, mKate2, in the dry state. The fluorescence intensity of mKate2 alone decreased gradually through repeated dehydration-rehydration treatments. However, in the presence of the LEA model peptide, the peak intensity was maintained almost perfectly during such stress treatments, which implies that the three dimensional structure of the active site of mKate2 was protected even under severe desiccation conditions. For comparison, similar experiments were performed with other additives such as a native G3LEA protein, trehalose and BSA, all of whose protective abilities were lower than that of the LEA model peptide. We prepared a 22-mer model peptide of a group-3 LEA protein. The fluorescent peak of a red fluorescent protein was almost lost on drying. The model peptide suppressed such desiccation-induced damage. This indicates that the 3D structure of the fluorophore was protected. The peptide exhibited the highest protective effect among the reagents tested.
Collapse
|
5
|
Ikeda Y, Taira T, Sakai K, Sakai H, Shigeri Y, Imura T. Lipid Nanodisc Formation using Pxt-5 Peptide Isolated from Amphibian (Xenopus tropicalis) Skin, and its Altered Form, Modify-Pxt-5. J Oleo Sci 2018; 67:1035-1041. [PMID: 30012902 DOI: 10.5650/jos.ess18051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nanodiscs are self-assembled discoidal nanoparticles composed of amphiphilic α-helical scaffold proteins or peptides that accumulate around the circumference of a lipid bilayer. In this study, Pxt-5, which is an antimicrobial peptide isolated from the skin of Xenopus tropicalis, and its modified peptide (Modify-Pxt-5) were synthesized by solid-phase peptide synthesis (SPPS).Their surface properties, which are an important factor in inducing nanodisc formation, were investigated by circular dichroism (CD) spectroscopy, surface tension measurement, phospholipid vesicle clearance assay, and negative-staining transmission electron microscopy (NS-TEM). The α-helicity of Pxt-5 (8.4%) improved drastically to 45.6% by four amino-acid substitutions (Modify-Pxt-5). Both the peptides, having hydrophobic and hydrophilic faces, behaved like general surfactants, and the surface activity of Modify-Pxt-5 (CAC: 9.5×10-5 M, γCAC: 30.3 mN·m-1) was much higher than that of Pxt-5 (CAC: 7.9×10-5 M, γCAC: 38.1 mN·m-1). A turbid L-α-dimyristoylphosphatidylcholine (DMPC) vesicle solution (T = 0.3%) quickly turned transparent upon addition of Pxt-5 or Modify-Pxt-5. After twelve hours, the transmittance of vesicle solution with Modify-Pxt-5 (T = 96.2%) was found to be higher than that of vesicle solution with Pxt-5 (T = 83.5%), and then the micro-solubilized solutions were observed by NS-TEM. Interestingly, nanodisc structures were found in the vicinity of DMPC vesicles in both the images, and the average diameter of the nanodiscs was 11.2 ± 6.0 nm for those containing Pxt-5 and 10.8 ± 5.8 nm for those containing Modify-Pxt-5. It was also found that Modify-Pxt-5 effectively self-assembles into nanodiscs compared to Pxt-5 without any substitutions.
Collapse
Affiliation(s)
- Yuri Ikeda
- Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST).,Faculty of Science and Technology, Tokyo University of Science
| | - Toshiaki Taira
- Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kenichi Sakai
- Faculty of Science and Technology, Tokyo University of Science
| | - Hideki Sakai
- Faculty of Science and Technology, Tokyo University of Science
| | - Yasushi Shigeri
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tomohiro Imura
- Research Institute for Innovation in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
6
|
Vafaei S, Tabaei SR, Guneta V, Choong C, Cho NJ. Hybrid Biomimetic Interfaces Integrating Supported Lipid Bilayers with Decellularized Extracellular Matrix Components. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3507-3516. [PMID: 29489371 DOI: 10.1021/acs.langmuir.7b03265] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper describes the functionalization of solid supported phospholipid bilayer with decellularized extracellular matrix (dECM) components, toward the development of biomimetic platforms that more closely mimic the cell surface environment. The dECM was obtained through a combination of chemical and enzymatic treatments of mouse adipose tissue that contains collagen, fibronectin, and glycosaminoglycans (GAGs). Using amine coupling chemistry, the dECM components were attached covalently to the surface of a supported lipid bilayer containing phospholipids with reactive carboxylic acid headgroups. The bilayer formation and the kinetics of subsequent dECM conjugation were monitored by quartz crystal microbalance with dissipation (QCM-D). Fluorescence recovery after photobleaching (FRAP) confirmed the fluidity of the membrane after functionalization with dECM. The resulting hybrid biomimetic interface supports the attachment and survival of the human hepatocyte Huh 7.5 and maintains the representative hepatocellular function. Importantly, the platform is suitable for monitoring the lateral organization and clustering of cell-binding ligands and growth factor receptors in the presence of the rich biochemical profile of tissue-derived ECM components.
Collapse
Affiliation(s)
- Setareh Vafaei
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
| | - Seyed R Tabaei
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
| | - Vipra Guneta
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| | - Cleo Choong
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- KK Research Centre , KK Women's and Children's Hospital , 100 Bukit Timah Road , 229899 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
- Centre for Biomimetic Sensor Science , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 Singapore
| |
Collapse
|
7
|
Furuki T, Sakurai M. Physicochemical Aspects of the Biological Functions of Trehalose and Group 3 LEA Proteins as Desiccation Protectants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:271-286. [PMID: 30288715 DOI: 10.1007/978-981-13-1244-1_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we first focus on the mechanism by which the larva of the sleeping chironomid, Polypedilum vanderplanki, survives an extremely dehydrated state and describe how trehalose and probably late embryogenesis abundant (LEA) proteins work as desiccation protectants. Second, we summarize the solid-state and solution properties of trehalose and discuss why trehalose works better than other disaccharides as a desiccation protectant. Third, we describe the structure and function of two model peptides based on group 3 LEA proteins after a short introduction of native LEA proteins themselves. Finally, we present our conclusions and a perspective on the application of trehalose and LEA model peptides to the long-term storage of biological materials.
Collapse
Affiliation(s)
- Takao Furuki
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
8
|
Wang Y, Jiang L, Wei C, Zhang H. Phase behaviors and self-assembled properties of ion-pairing amphiphile molecules formed by medium-chain fatty acids andl-arginine triggered by external conditions. NEW J CHEM 2017. [DOI: 10.1039/c7nj03299d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The responsive self-assembled structures of ion-pairing amphiphile molecules will provide good insights into various fields.
Collapse
Affiliation(s)
- Yuxian Wang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Ling Jiang
- College of Food Science and Light Industry
- Nanjing Tech University
- Nanjing 211816
- China
| | - Ce Wei
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| | - Hongman Zhang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|