1
|
Abstract
This short review article provides the reader with a summary of the history of organic conductors. To retain a neutral and objective point of view regarding the history, background, novelty, and details of each research subject within this field, a thousand references have been cited with full titles and arranged in chronological order. Among the research conducted over ~70 years, topics from the last two decades are discussed in more detail than the rest. Unlike other papers in this issue, this review will help readers to understand the origin of each topic within the field of organic conductors and how they have evolved. Due to the advancements achieved over these 70 years, the field is nearing new horizons. As history is often a reflection of the future, this review is expected to show the future directions of this research field.
Collapse
|
2
|
Abstract
The smart utilization of photons is paid global attention from the viewpoint of renewable energy and information technology. However, it is still impossible to store photons as batteries and condensers do for electrons. All the present technologies utilize (the energy of) photons in situ, such as solar panels, or in spontaneous relaxation processes, such as photoluminescence. If we can store the energy of photons over an arbitrary period and utilize them on demand, not only we will make an innovative progress in energy management, but we will also be able to replace a part of electrons by photons in the information technology for more efficient performance. In this article, we review a prototype of such a material including the current status of related research as well as where we are heading for.
Collapse
|
3
|
Camerel F, Fourmigué M. (Photo)Thermal Stimulation of Functional Dithiolene Complexes in Soft Matter. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Franck Camerel
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 Campus de Beaulieu 35042 Rennes France
| | - Marc Fourmigué
- Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes) ‐ UMR 6226 Campus de Beaulieu 35042 Rennes France
| |
Collapse
|
4
|
Naito T, Watanabe N, Sakamoto Y, Miyaji Y, Shirahata T, Misaki Y, Kitou S, Sawa H. A molecular crystal with an unprecedentedly long-lived photoexcited state. Dalton Trans 2019; 48:12858-12866. [PMID: 31317979 DOI: 10.1039/c9dt02377a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Au(iii)-complex anions in a newly synthesised compound BPY[Au(dmit)2]2 (BPY = N,N'-ethylene-2,2'-bipyridinium, dmit = 1,3-dithiole-2-thione-4,5-dithiolate) reversibly exhibit a molecular distortion in the solid state under UV-radiation. The photoexcited state is maintained for a week at 298 K, during which time molecules relax to their original structures and energy is gradually released as heat without decomposition or light emission. Most Au atoms adopt square planar (SP) coordination geometries, but some anions have unusual non-planar (NP) coordination geometries that produce disorder at the Au sites. The total (Gibbs) energy of the system depends on the proportion of Au atoms of NP geometry, which is directly determined from the occupancy (Occ (%)) by X-ray diffractometry. Due to phase transition, Occ substantially changes at a critical temperature (TC) of ∼280 K without other structural changes; however it remains almost constant in each phase. In addition, due to UV-promoted charge-transfer transitions between BPY and Au(dmit)2, Occ can be controlled by UV irradiation (∼250-450 nm). The UV-excited states have unprecedentedly long relaxation times (t1/2 > 36 h at 298 K), which is attributed to the close connection between the degrees of freedom on charge, spin, and molecular structures.
Collapse
Affiliation(s)
- Toshio Naito
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan. and Advanced Research Support Center (ADRES), Ehime University, Matsuyama 790-8577, Japan and Geodynamics Research Center (GRC), Ehime University, Matsuyama 790-8577, Japan and Research Unit for Development of Organic Superconductors, Ehime University, Matsuyama 790-8577, Japan
| | - Naoki Watanabe
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan.
| | - Yuuka Sakamoto
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan.
| | - Yuuko Miyaji
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan.
| | - Takashi Shirahata
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan. and Research Unit for Development of Organic Superconductors, Ehime University, Matsuyama 790-8577, Japan
| | - Yohji Misaki
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan. and Research Unit for Development of Organic Superconductors, Ehime University, Matsuyama 790-8577, Japan and Research Unit for Power Generation and Storage Materials, Ehime University, Matsuyama 790-8577, Japan
| | - Shunsuke Kitou
- Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan and Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
| | - Hiroshi Sawa
- Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan
| |
Collapse
|
5
|
Zapata-Rivera J, Calzado CJ. Light-Induced Control of the Spin Distribution on Cu–Dithiolene Complexes: A Correlated Ab Initio Study. Molecules 2019; 24:molecules24061088. [PMID: 30893883 PMCID: PMC6470791 DOI: 10.3390/molecules24061088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 11/16/2022] Open
Abstract
Metal dithiolene complexes—M(dmit)2—are key building blocks for magnetic, conducting, and optical molecular materials, with singular electronic structures resulting from the mixing of the metal and dmit ligand orbitals. Their use in the design of magnetic and conducting materials is linked to the control of the unpaired electrons and their localized/delocalized nature. It has been recently found that UV–Vis light can control the spin distribution of some [Cu(dmit)2]−2 salts in a direct and reversible way. In this work, we study the optical response of these salts and the origin of the differences observed in the EPR spectra under UV–Vis irradiation by means of wave function-based quantum chemistry methods. The low-lying states of the complex have been characterized and the electronic transitions with a non-negligible oscillator strength have been identified. The population of the corresponding excited states promoted by the UV–Vis absorption produces significant changes in the spin distribution, and could explain the changes observed in the system upon illumination. The interaction between neighbor [Cu(dmit)2]−2 complexes is weakly ferromagnetic, consistent with the relative orientation of the magnetic orbitals and the crystal packing, but in disagreement with previous assignments. Our results put in evidence the complex electronic structure of the [Cu(dmit)2]−2 radical and the relevance of a multideterminantal approach for an adequate analysis of their properties.
Collapse
Affiliation(s)
- Jhon Zapata-Rivera
- Facultad de Ciencias Básicas and Universidad Tecnológica de Bolívar, Campus Tecnológico s/n, 131001 Cartagena, Colombia.
| | - Carmen J Calzado
- Departamento de Química Física, Universidad de Sevilla, c/Prof. García González and s/n, 41012 Sevilla, Spain.
| |
Collapse
|
6
|
Komiyama M, Mori T, Ariga K. Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180084] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Makoto Komiyama
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577, Japan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, P. R. China
| | - Taizo Mori
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katsuhiko Ariga
- WPI-MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
7
|
Abstract
In 2016, the Nobel Prize in Chemistry was awarded for pioneering work on molecular machines. Half a year later, in Toulouse, the first molecular car race, a "nanocar race", was held by using the tip of a scanning tunneling microscope as an electrical remote control. In this Focus Review, we discuss the current state-of-the-art in research on molecular machines at interfaces. In the first section, we briefly explain the science behind the nanocar race, followed by a selection of recent examples of controlling molecules on surfaces. Finally, motion synchronization and the functions of molecular machines at liquid interfaces are discussed. This new concept of molecular tuning at interfaces is also introduced as a method for the continuous modification and optimization of molecular structure for target functions.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Taizo Mori
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Waka Nakanishi
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
8
|
Ariga K, Mori T, Shrestha LK. Nanoarchitectonics from Molecular Units to Living-Creature-Like Motifs. CHEM REC 2017; 18:676-695. [PMID: 29205796 DOI: 10.1002/tcr.201700070] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
Important points for the fabrication of functional materials are the creation of nanoscale/molecular-scale units and architecting them into functional materials and systems. Recently, a new conceptual paradigm, nanoarchitectonics, has been proposed to combine nanotechnology and other methodologies including supramolecular chemistry, self-assembly and self-organization to satisfy major features of nanoscience and promote the creation of functional materials and systems. In this account article, our recent research results in materials development based on the nanoarchitectonics concept are summarized in two stories, (i) nanoarchitectonics from fullerenes as the simplest nano-units and (ii) dimension-dependent nanoarchitectonics from various structural units. The former demonstrates creativity of the nanoarchitectonics concept only with simple construction stuffs on materials fabrications, and a wide range of material applicability for the nanoarchitectonics strategy is realized in the latter ones.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-0827, Japan
| | - Taizo Mori
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Lok Kumar Shrestha
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
9
|
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170156] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masahiko Sisido
- Professor Emeritus, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| |
Collapse
|
10
|
Rodríguez-Salcedo J, Vivas-Reyes R, Zapata-Rivera J. Characterization of charge transfer mechanisms in the molecular capacitor β-DiCC[Ni(dmit)2] using TD-DFT methods. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Dye-Sensitized Molecular Charge Transfer Complexes: Magnetic and Conduction Properties in the Photoexcited States of Ni(dmit)2 Salts Containing Photosensitive Dyes. MAGNETOCHEMISTRY 2017. [DOI: 10.3390/magnetochemistry3020020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|