1
|
When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Med Chem 2020; 11:2205-2231. [PMID: 31538523 DOI: 10.4155/fmc-2018-0540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of hybrid materials, which combine inorganic with organic materials, is receiving increasing attention by researchers. As a consequence of carbon nanostructures high chemical versatility, they exhibit enormous potential for new highly engineered multifunctional nanotherapeutic agents for cancer therapy. Whereas many groups are working on drug delivery systems for chemotherapy, the use of carbon nanohybrids for radiotherapy is rarely applied. Thus, nanotechnology offers a wide range of solutions to overcome the current obstacles of conventional chemo- and/or radiotherapies. Within this review, the structure and properties of carbon nanostructures (carbon nanotubes, nanographene oxide) functionalized preferentially with different types of polymers (synthetic, natural) are discussed. In short, synthesis approaches, toxicity investigations and anticancer efficacy of different carbon nanohybrids are described.
Collapse
|
2
|
Dwivedi N, Shah J, Mishra V, Tambuwala M, Kesharwani P. Nanoneuromedicine for management of neurodegenerative disorder. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Joshi K, Mazumder B, Chattopadhyay P, Bora NS, Goyary D, Karmakar S. Graphene Family of Nanomaterials: Reviewing Advanced Applications in Drug delivery and Medicine. Curr Drug Deliv 2019; 16:195-214. [DOI: 10.2174/1567201815666181031162208] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Graphene in nano form has proven to be one of the most remarkable materials. It has a single
atom thick molecular structure and it possesses exceptional physical strength, electrical and electronic
properties. Applications of the Graphene Family of Nanomaterials (GFNs) in different fields of therapy
have emerged, including for targeted drug delivery in cancer, gene delivery, antimicrobial therapy, tissue
engineering and more recently in more diseases including HIV. This review seeks to analyze current
advances of potential applications of graphene and its family of nano-materials for drug delivery and
other major biomedical purposes. Moreover, safety and toxicity are the major roadblocks preventing the
use of GFNs in therapeutics. This review intends to analyze the safety and biocompatibility of GFNs
along with the discussion on the latest techniques developed for toxicity reduction and biocompatibility
enhancement of GFNs. This review seeks to evaluate how GFNs in future will serve as biocompatible
and useful biomaterials in therapeutics.
Collapse
Affiliation(s)
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | | | | | | | | |
Collapse
|
4
|
Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J. Photodynamic therapy - mechanisms, photosensitizers and combinations. Biomed Pharmacother 2018; 106:1098-1107. [PMID: 30119176 DOI: 10.1016/j.biopha.2018.07.049] [Citation(s) in RCA: 1189] [Impact Index Per Article: 169.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/07/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a modern and non-invasive form of therapy, used in the treatment of non-oncological diseases as well as cancers of various types and locations. It is based on the local or systemic application of a photosensitive compound - the photosensitizer, which is accumulated in pathological tissues. The photosensitizer molecules absorb the light of the appropriate wavelength, initiating the activation processes leading to the selective destruction of the inappropriate cells. The photocytotoxic reactions occur only within the pathological tissues, in the area of photosensitizer distribution, enabling selective destruction. Over the last decade, a significant acceleration in the development of nanotechnology has been observed. The combination of photosensitizers with nanomaterials can improve the photodynamic therapy efficiency and eliminate its side effects as well. The use of nanoparticles enables achievement a targeted method which is focused on specific receptors, and, as a result, increases the selectivity of the photodynamic therapy. The object of this review is the anticancer application of PDT, its advantages and possible modifications to potentiate its effects.
Collapse
Affiliation(s)
- Stanisław Kwiatkowski
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Bartosz Knap
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Dawid Przystupski
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland; Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland
| | - Ewa Kędzierska
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Karolina Knap-Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwillowska 11, 20-080, Lublin, Poland
| | - Jolanta Kotlińska
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Olga Michel
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland
| | - Krzysztof Kotowski
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368, Wroclaw, Poland; Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556, Wroclaw, Poland.
| |
Collapse
|
5
|
Fu Z, Chen K, Li L, Zhao F, Wang Y, Wang M, Shen Y, Cui H, Liu D, Guo X. Spherical and Spindle-Like Abamectin-Loaded Nanoparticles by Flash Nanoprecipitation for Southern Root-Knot Nematode Control: Preparation and Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E449. [PMID: 29925819 PMCID: PMC6027074 DOI: 10.3390/nano8060449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 12/05/2022]
Abstract
Southern root-knot nematode (Meloidogyne incognita) is a biotrophic parasite, causing enormous loss in global crop production annually. Abamectin (Abm) is a biological and high-efficiency pesticide against Meloidogyne incognita. In this study, a powerful method, flash nanoprecipitation (FNP), was adopted to successfully produce Abm-loaded nanoparticle suspensions with high drug loading capacity (>40%) and encapsulation efficiency (>95%), where amphiphilic block copolymers (BCPs) poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG), poly(d,l-lactide)-b-poly(ethylene glycol) (PLA-b-PEG), or poly(caprolactone)-b-poly(ethylene glycol) (PCL-b-PEG) were used as the stabilizer to prevent the nanoparticles from aggregation. The effect of the drug-to-stabilizer feed ratio on the particle stability were investigated. Moreover, the effect of the BCP composition on the morphology of Abm-loaded nanoparticles for controlling Meloidogyne incognita were discussed. Notably, spindle-like nanoparticles were obtained with PCL-b-PEG as the stabilizer and found significantly more efficient (98.4% mortality at 1 ppm particle concentration) than spherical nanoparticles using PLGA-b-PEG or PLA-b-PEG as the stabilizer. This work provides a more rapid and powerful method to prepare stable Abm-loaded nanoparticles with tunable morphologies and improved effectiveness for controlling Meloidogyne incognita.
Collapse
Affiliation(s)
- Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kai Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, China.
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fang Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yan Wang
- Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mingwei Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yue Shen
- Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Haixin Cui
- Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Dianhua Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Engineering Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Xinjiang 832000, China.
| |
Collapse
|
6
|
Fresco-Cala B, López-Lorente ÁI, Cárdenas S. Monolithic Solid Based on Single-Walled Carbon Nanohorns: Preparation, Characterization, and Practical Evaluation as a Sorbent. NANOMATERIALS 2018; 8:nano8060370. [PMID: 29799488 PMCID: PMC6027447 DOI: 10.3390/nano8060370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 01/26/2023]
Abstract
A monolithic solid based solely on single walled carbon nanohorns (SWNHs) was prepared without the need of radical initiators or gelators. The procedure involves the preparation of a wet jelly-like system of pristine SWNHs followed by slow drying (48 h) at 25 °C. As a result, a robust and stable porous network was formed due to the interaction between SWNHs not only via π-π and van der Waals interactions, but also via the formation of carbon bonds similar to those observed within dahlia aggregates. Pristine SWNHs and the SWNH monolith were characterized by several techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), confocal laser scanning microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen intrusion porosimetry. Taking into account the efficiency of carbon nanoparticles in sorption processes, the potential applicability of the SWNH-monolith in this research field was explored using toluene; m-, p-, and o-xylene; ethylbenzene; and styrene, as target analytes. Detection limits were 0.01 µg·L−1 in all cases and the inter-day precision was in the interval 7.4–15.7%. The sorbent performance of the nanostructured monolithic solid was evaluated by extracting the selected compounds from different water samples with recovery values between 81.5% and 116.4%.
Collapse
Affiliation(s)
- Beatriz Fresco-Cala
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| | - Ángela I López-Lorente
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| | - Soledad Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071 Córdoba, Spain.
| |
Collapse
|
7
|
Ji Q, Qiao X, Liu X, Jia H, Yu JS, Ariga K. Enhanced Adsorption Selectivity of Aromatic Vapors in Carbon Capsule Film by Control of Surface Surfactants on Carbon Capsule. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20170357] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Qingmin Ji
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science of Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China
- MIIT Key Laboratory of Advanced Display Materials and Devices, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Xu Qiao
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Xinbang Liu
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science of Technology, 200 Xiaolingwei, Nanjing 210094, P. R. China
| | - Hongbing Jia
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Jong-Sung Yu
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), T, Daegu 711-873, Korea
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials, Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|