1
|
Ogi U, Ikeda S, Okano K, Horie M, Mori A. Borylative Desymmetrization of Multifunctional Haloarenes assisted by Sodium Dispersion. Chemistry 2025; 31:e202500355. [PMID: 39888164 DOI: 10.1002/chem.202500355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Multiply halogenated aromatic compounds were selectively borylated by a boron alkoxide in the presence of sodium dispersion when the reaction was carried out at a low temperature, while multi-functionalization took place at an elevated temperature. The reaction of 1,4-dichlorobenzene with sodium dispersion (200-1200 mol%) in the presence of isopropyloxyboron pinacolate (120-240 mol%) afforded (4-chlorophenyl)boron pinacolate in up to 84 % yield. Formation of diborylated product hardly accompanied under the reaction conditions at -78 °C for 1 h.
Collapse
Affiliation(s)
- Ukyo Ogi
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Shuichi Ikeda
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Masaki Horie
- Department of Chemical Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
2
|
Yamaguchi H, Takahashi F, Kurogi T, Yorimitsu H. Reductive anti-Dizincation of Arylacetylenes. Chem Asian J 2024; 19:e202400384. [PMID: 38647096 DOI: 10.1002/asia.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Arylacetylenes undergo anti-1,2-dizincation to afford trans-1,2-dizincioalkenes. The process employs sodium dispersion as a reducing agent and zinc chloride TMEDA complex as a reduction-resistant zinc electrophile. This reductive anti-dizincation contrasts with the conventional additive syn-dimetalation like silylzincation. The resulting dizincated alkenes undergo the cross-coupling to yield multi-substituted alkenes stereoselectively.
Collapse
Affiliation(s)
- Haruka Yamaguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Fumiya Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Kurogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
3
|
Li W, Ricker R, Lok Chan K, Fung Lau P, Buchbinder NW, Krebs J, Friedrich A, Lin Z, Santos WL, Radius U, Marder TB. Phosphine-Catalyzed 1,2-cis-Diboration of 1,3-Butadiynes. Chemistry 2024; 30:e202401235. [PMID: 38593362 DOI: 10.1002/chem.202401235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Trialkyl phosphines PMe3 and PEt3 catalyze the 1,2-cis-diboration of 1,3-butadiynes to give 1,2-diboryl enynes. The products were utilized to synthesize 1,1,2,4-tetraaryl enynes using a Suzuki-Miyaura protocol and can readily undergo proto-deborylation.
Collapse
Affiliation(s)
- Weipeng Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, 97074, Germany
| | - Robert Ricker
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, 97074, Germany
| | - Ka Lok Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Pak Fung Lau
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | - Johannes Krebs
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, 97074, Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, 97074, Germany
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Webster L Santos
- Department of Chemistry Virginia Tech, Blacksburg, VA, 24061, USA
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, 97074, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, 97074, Germany
| |
Collapse
|
4
|
Fukazawa M, Takahashi F, Kurogi T, Yorimitsu H. Sodium-Mediated Reductive C-C Bond Cleavage Assisted by Boryl Groups. Chem Asian J 2024; 19:e202400100. [PMID: 38385830 DOI: 10.1002/asia.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/23/2024]
Abstract
In contrast to the well-established oxidative C=C double bond cleavage to give the corresponding carbonyl compounds, little is known about reductive C=C double bond cleavage. Here we report that C-C single bond cleavage in 1,2-diaryl-1,2-diborylethanes proceeds by reduction with sodium metal to yield α-boryl benzylsodium species. In combination with our previous reductive diboration of stilbenes, the overall transformation represents reductive cleavage of the C=C double bonds of stilbene to yield α-boryl-α-sodiated toluenes. This reductive two-step C=C double bond cleavage is applicable to ring-opening or ring-expansion reactions of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Mizuki Fukazawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502 Kyoto, Japan
| | - Fumiya Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502 Kyoto, Japan
| | - Takashi Kurogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502 Kyoto, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Sakyo-ku, 606-8502 Kyoto, Japan
| |
Collapse
|
5
|
Anderson DE, Tortajada A, Hevia E. New Frontiers in Organosodium Chemistry as Sustainable Alternatives to Organolithium Reagents. Angew Chem Int Ed Engl 2024; 63:e202313556. [PMID: 37801443 DOI: 10.1002/anie.202313556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
With their highly reactive respective C-Na and N-Na bonds, organosodium and sodium amide reagents could be viewed as obvious replacements or even superior reagents to the popular, widely utilised organolithiums. However, they have seen very limited applications in synthesis due mainly to poor solubility in common solvents and their limited stability. That notwithstanding in recent years there has been a surge of interest in bringing these sustainable metal reagents into the forefront of organometallics in synthesis. Showcasing the growth in utilisation of organosodium complexes within several areas of synthetic chemistry, this Minireview discusses promising new methods that have been recently reported with the goal of taming these powerful reagents. Special emphasis is placed on coordination and aggregation effects in these reagents which can impart profound changes in their solubility and reactivity. Differences in observed reactivity between more nucleophilic aryl and alkyl sodium reagents and the less nucleophilic but highly basic sodium amides are discussed along with current mechanistic understanding of their reactivities. Overall, this review aims to inspire growth in this exciting field of research to allow for the integration of organosodium complexes within common important synthetic transformations.
Collapse
Affiliation(s)
- David E Anderson
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andreu Tortajada
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
6
|
Miwa K, Aoyagi S, Amaya T, Sasamori T, Morisako S, Kurogi T, Yorimitsu H. Multiply exo-Methylated Corannulenes. Chemistry 2023; 29:e202301557. [PMID: 37302982 DOI: 10.1002/chem.202301557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
The curved π-conjugated surface of bowl-shaped corannulene has been multiply methylated to form exo-di-, -tetra-, and -hexamethylated corannulenes. The multimethylations became possible through in-situ iterative reduction/methylation sequences that involve the reduction of corannulenes using sodium to form the anionic corannulene species, and the subsequent SN 2 reaction of the anionic species with reduction-resistant dimethyl sulfate. X-ray diffraction analyses, NMR, MS, UV-Vis measurements, and DFT calculations have revealed the molecular structures of the multimethylated corannulenes and the sequence of the multimethylation. This work has the potential to contribute to the controlled synthesis and characterizations of multifunctionalized fullerenes.
Collapse
Affiliation(s)
- Kazuhira Miwa
- Department of Information and Basic Science Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Shinobu Aoyagi
- Department of Information and Basic Science Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Toru Amaya
- Department of Information and Basic Science Graduate School of Science, Nagoya City University, Nagoya, 467-8501, Japan
| | - Takahiro Sasamori
- Division of Chemistry Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Sciences (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8571, Japan
| | - Shogo Morisako
- Division of Chemistry Faculty of Pure and Applied Sciences and Tsukuba Research Center for Energy Materials Sciences (TREMS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8571, Japan
| | - Takashi Kurogi
- Department of Chemistry Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
7
|
Palladium-Catalyzed Cross-Coupling Reactions of Borylated Alkenes for the Stereoselective Synthesis of Tetrasubstituted Double Bond. ORGANICS 2022. [DOI: 10.3390/org3030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The stereoselective formation of tetrasubstituted alkenes remains one of the key goals of modern organic synthesis. In addition to other methods, the stereoselective synthesis of tetrasubstituted alkenes can be achieved by means of cross-coupling reactions of electrophilic and nucleophilic alkene templates. The use of electrophilic templates for the stereoselective synthesis of tetrasubstituted alkenes has previously been described. Therefore, the present review summarizes the procedures available for the stereoselective preparation of tetrasubstituted alkenes using stable and isolable nucleophilic templates.
Collapse
|
8
|
Wang S, Kaga A, Kurogi T, Yorimitsu H. Reductive Ring Opening of Arylcyclopropanecarboxamides Accompanied by Borylation and Enolate Formation. Org Lett 2022; 24:1105-1109. [PMID: 35076241 DOI: 10.1021/acs.orglett.2c00084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of arylcyclopropanecarboxamides with a sodium dispersion in the presence of methoxypinacolborane as a reduction-resistant electrophile leads to reductive cleavage of the cyclopropane ring followed by instant trapping with the boron electrophile to yield the enolates of γ-aryl-γ-borylalkanamides. The enolates react further with a different electrophile to yield the corresponding α-substituted amides with anti selectivity.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsushi Kaga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Kurogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Miwa K, Aoyagi S, Sasamori T, Morisako S, Ueno H, Matsuo Y, Yorimitsu H. Facile Multiple Alkylations of C 60 Fullerene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020450. [PMID: 35056764 PMCID: PMC8779915 DOI: 10.3390/molecules27020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
Abstract
The reduction of fullerene (C60) with sodium dispersion in the presence of an excess amount of dipropyl sulfate was found to yield highly propylated fullerene, C60(nC3H7)n (max. n = 24), and C60(nC3H7)20 was predominantly generated as determined by mass spectroscopy.
Collapse
Affiliation(s)
- Kazuhira Miwa
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Aichi, Japan; (K.M.); (S.M.)
| | - Shinobu Aoyagi
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Aichi, Japan; (K.M.); (S.M.)
- Correspondence: (S.A.); (T.S.); Tel.: +81-52-872-5061 (S.A.); +81-29-853-4412 (T.S.)
| | - Takahiro Sasamori
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Aichi, Japan; (K.M.); (S.M.)
- Tsukuba Research Center for Energy Materials Sciences (TREMS), Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Ibaraki, Japan
- Correspondence: (S.A.); (T.S.); Tel.: +81-52-872-5061 (S.A.); +81-29-853-4412 (T.S.)
| | - Shogo Morisako
- Department of Information and Basic Science, Graduate School of Science, Nagoya City University, Nagoya 467-8501, Aichi, Japan; (K.M.); (S.M.)
- Tsukuba Research Center for Energy Materials Sciences (TREMS), Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8571, Ibaraki, Japan
| | - Hiroshi Ueno
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences and Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Miyagi, Japan;
| | - Yutaka Matsuo
- Department of Chemical System Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Aichi, Japan;
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan;
| |
Collapse
|
10
|
Asako S, Takahashi I, Kurogi T, Murakami Y, Ilies L, Takai K. Birch Reduction of Arenes Using Sodium Dispersion and DMI under Mild Conditions. CHEM LETT 2022. [DOI: 10.1246/cl.210546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sobi Asako
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ikko Takahashi
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takashi Kurogi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yoshiaki Murakami
- KOBELCO ECO-Solutions Co., Ltd., 4-78-1 Wakinohama-cho, Chuo-ku, Kobe 651-0072, Japan
| | - Laurean Ilies
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
11
|
Koyama S, Takahashi F, Saito H, Yorimitsu H. Reductive Cleavage of Propargylic Ethers with Alkali Metal: Application to the Synthesis of Allenylboronates. Org Lett 2021; 23:8590-8594. [PMID: 34694816 DOI: 10.1021/acs.orglett.1c03316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of propargylic ethers with sodium dispersion in the presence of lithium iodide results in the generation of the corresponding carbanion species via cleavage of the propargylic C-O bond. The anionic species react with trimethoxyborane to yield the allenylboronates including highly substituted ones that are difficult to synthesize.
Collapse
Affiliation(s)
- Shunsuke Koyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Fumiya Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hayate Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Mandal R, Garai B, Sundararaju B. Cp*Co III-Catalyzed C(7)-H Bond Annulation of Indolines with Alkynes. J Org Chem 2021; 86:9407-9417. [PMID: 34213334 DOI: 10.1021/acs.joc.1c00713] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An efficient protocol for the synthesis of biologically essential pyrroloquinolinones has been developed under Cp*CoIII catalysis, which involves a cascade reaction of C(7)-H alkenylation with alkynes followed by nucleophilic addition. A wide variety of internal alkynes including enyne, diyne, and ynamide and more challenging terminal alkynes were successfully employed for the annulation in good to excellent yield with high regioselectivity.
Collapse
Affiliation(s)
- Rajib Mandal
- Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 208016
| | - Bholanath Garai
- Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 208016
| | - Basker Sundararaju
- Fine Chemical Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India 208016
| |
Collapse
|
13
|
Fukazawa M, Takahashi F, Yorimitsu H. Sodium-Promoted Borylation of Polycyclic Aromatic Hydrocarbons. Org Lett 2021; 23:4613-4617. [PMID: 34076437 DOI: 10.1021/acs.orglett.1c01355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Sodium dispersion promotes the reductive borylation of polycyclic aromatic hydrocarbons (PAHs) with MeOBpin. Anthracenes and phenanthrenes are converted to the corresponding dearomatized diborylated products. The reductive diborylation of naphthalene-based small π-systems yields similar yet unstable products that are oxidized into formal C-H borylation products with unique regioselectivity. Pyrene is converted to 1-borylpyrene without the addition of an oxidant. The latter two reactions represent a new route to useful borylated PAHs that rivals C-X borylation and catalytic C-H borylation.
Collapse
Affiliation(s)
- Mizuki Fukazawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Fumiya Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Asako S, Takahashi I, Nakajima H, Ilies L, Takai K. Halogen-sodium exchange enables efficient access to organosodium compounds. Commun Chem 2021; 4:76. [PMID: 36697639 PMCID: PMC9814623 DOI: 10.1038/s42004-021-00513-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
With sodium being the most abundant alkali metal on Earth, organosodium compounds are an attractive choice for sustainable chemical synthesis. However, organosodium compounds are rarely used-and are overshadowed by organolithium compounds-because of a lack of convenient and efficient preparation methods. Here we report a halogen-sodium exchange method to prepare a large variety of (hetero)aryl- and alkenylsodium compounds including tri- and tetrasodioarenes, many of them previously inaccessible by other methods. The key discovery is the use of a primary and bulky alkylsodium lacking β-hydrogens, which retards undesired reactions, such as Wurtz-Fittig coupling and β-hydrogen elimination, and enables efficient halogen-sodium exchange. The alkylsodium is readily prepared in situ from neopentyl chloride and an easy-to-handle sodium dispersion. We believe that the efficiency, generality, and convenience of the present method will contribute to the widespread use of organosodium in organic synthesis, ultimately contributing to the development of sustainable organic synthesis by rivalling the currently dominant organolithium reagents.
Collapse
Affiliation(s)
- Sobi Asako
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
- RIKEN Center for Sustainable Resource Science, Saitama, Japan.
| | - Ikko Takahashi
- RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Hirotaka Nakajima
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Laurean Ilies
- RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
15
|
Ito S, Takahashi F, Yorimitsu H. Defluorinative Diborasodiation of Benzotrifluorides with Bis(pinacolato)Diboron and Sodium. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shiori Ito
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Fumiya Takahashi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
16
|
Asako S, Ilies L, De PB. Recent Advances in the Use of Sodium Dispersion for Organic Synthesis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1478-7061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractThis short review describes the recent emergence of organosodium chemistry, motivated by the requirements of modern synthetic chemistry for sustainability, and powered by the use of sodium dispersion, a form of sodium that is commercially available, easy to handle, and has a large active surface area. We present recent methods for the preparation of organosodium compounds using sodium dispersion, and their applications to synthesis. Sodium amides and phosphides are also briefly discussed.1 Introduction2 Sodium Dispersion3 Preparation of Organosodium Compounds3.1 Two-Electron Reduction of Aryl Halides3.2 Halogen–Sodium Exchange3.3 Directed Metalation3.4 Cleavage of C–C and C–Heteroatom Bonds4 Synthetic Applications4.1 Reduction in Combination with a Proton Source4.1.1 Bouveault–Blanc Reduction4.1.2 Birch Reduction4.1.3 Reductive Deuteration4.1.4 Chemoselective Cleavage of Amides and Nitriles4.2 Difunctionalization of Alkenes and Alkynes5 Sodium Amides and Phosphides6 Conclusions and Outlook
Collapse
|
17
|
Yorimitsu H, Wang S, Kaga A. On the Order of Addition of Sodium Dispersion in Reductive Diborations of Stilbene and 1,2-Diphenylcyclopropane. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)59] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Affiliation(s)
- Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science Kyoto University Kyoto Japan
| |
Collapse
|