1
|
Vlasenko NV, Yanushevska OI, Didenko OZ, Strizhak PE. Glycerol Oligomerization over Titania-Based Catalyst Compositions. Chemistry 2024; 30:e202302733. [PMID: 37962034 DOI: 10.1002/chem.202302733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 11/15/2023]
Abstract
The possibility of using TiO2 -based compositions: individual and sulfated titania, and their composites with carbon nanotubes as catalysts for glycerol oligomerization has been displayed. The effect of modification of TiO2 with sulfur and carbon nanotubes on acid-base and catalytic characteristics in the glycerol conversion was investigated. The activation of glycerol on the catalysts has been studied using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. Only the samples based on sulfated titania are active over glycerol transformation, showing up to 58.7 % conversion. This is explained by the presence of strong base sites. Glycerides up to pentaglycerides, both linear and nonlinear structure are formed by glycerol oligomerization over TiO2 -S. The addition of nanotubes to the catalyst reduces both the glycerol conversion (up to 10.5 %) and the yield of glycerides. However, the spectrum of the resulting products is significantly narrowed, increasing the selectivity for short-chain glycerides: the portion of diglycerides reaches 72 %, and triglycerides 21 %. Herewith, glycerides of a linear structure only formed.
Collapse
Affiliation(s)
- Nina V Vlasenko
- LV Pysarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028, Kyiv, Ukraine
| | - Olena I Yanushevska
- National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", Prosp. Peremohy, 37, 03056, Kyiv, Ukraine
| | - Olga Z Didenko
- LV Pysarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028, Kyiv, Ukraine
| | - Peter E Strizhak
- LV Pysarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prosp. Nauky 31, 03028, Kyiv, Ukraine
| |
Collapse
|
2
|
Ariga K. Liquid Interfacial Nanoarchitectonics: Molecular Machines, Organic Semiconductors, Nanocarbons, Stem Cells, and Others. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Shen X, Song J, Sevencan C, Leong DT, Ariga K. Bio-interactive nanoarchitectonics with two-dimensional materials and environments. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:199-224. [PMID: 35370475 PMCID: PMC8973389 DOI: 10.1080/14686996.2022.2054666] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 05/19/2023]
Abstract
Like the proposal of nanotechnology by Richard Feynman, the nanoarchitectonics concept was initially proposed by Masakazu Aono. The nanoarchitectonics strategy conceptually fuses nanotechnology with other research fields including organic chemistry, supramolecular chemistry, micro/nanofabrication, materials science, and bio-related sciences, and aims to produce functional materials from nanoscale components. In this review article, bio-interactive nanoarchitectonics and two-dimensional materials and environments are discussed as a selected topic. The account gives general examples of nanoarchitectonics of two-dimensional materials for energy storage, catalysis, and biomedical applications, followed by explanations of bio-related applications with two-dimensional materials such as two-dimensional biomimetic nanosheets, fullerene nanosheets, and two-dimensional assemblies of one-dimensional fullerene nanowhiskers (FNWs). The discussion on bio-interactive nanoarchitectonics in two-dimensional environments further extends to liquid-liquid interfaces such as fluorocarbon-medium interfaces and viscous liquid interfaces as new frontiers of two-dimensional environments for bio-related applications. Controlling differentiation of stem cells at fluidic liquid interfaces is also discussed. Finally, a conclusive section briefly summarizes features of bio-interactive nanoarchitectonics with two-dimensional materials and environments and discusses possible future perspectives.
Collapse
Affiliation(s)
- Xuechen Shen
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Jingwen Song
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| | - Cansu Sevencan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Katsuhiko Ariga
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Ibaraki, Japan
| |
Collapse
|
4
|
Ariga K, Fakhrullin R. Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, 42000, Republic of Tatarstan, Russian Federation
| |
Collapse
|
5
|
Rabin NN, Islam MS, Fukuda M, Yagyu J, Tagawa R, Sekine Y, Hayami S. Enhanced mixed proton and electron conductor at room temperature from chemically modified single-wall carbon nanotubes. RSC Adv 2022; 12:8632-8636. [PMID: 35424816 PMCID: PMC8984934 DOI: 10.1039/d2ra00521b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Remarkably high mixed proton and electron conduction arising from oxidized single-wall carbon nanotubes at room temperature is demonstrated. The respective proton and electronic conductivities are 1.40 and 8.0 × 10-2 S cm-1 in the in-plane direction, and 3.1 × 10-2 and 1.1 × 10-3 S cm-1 in the out-of-plane direction, indicating their potential in a wide range of solid electrolyte membranes.
Collapse
Affiliation(s)
- Nurun Nahar Rabin
- Institute of Industrial Nanomaterials (IINa), Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
| | - Md Saidul Islam
- Institute of Industrial Nanomaterials (IINa), Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
| | - Masahiro Fukuda
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
| | - Junya Yagyu
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
| | - Ryuta Tagawa
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
- Priority Organization for Innovation and Excellence, Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
| | - Shinya Hayami
- Institute of Industrial Nanomaterials (IINa), Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
- International Research Center for Agricultural and Environmental Biology (IRCAEB) 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
6
|
Atiqur Rahman M, Islam MS, Fukuda M, Yagyu J, Feng Z, Sekine Y, Lindoy LF, Ohyama J, Hayami S. High Proton Conductivity of 3D Graphene Oxide Intercalated with Aromatic Sulfonic Acids. Chempluschem 2022; 87:e202200003. [PMID: 35333452 DOI: 10.1002/cplu.202200003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Indexed: 02/21/2024]
Abstract
The development of efficient proton conductors that are capable of high power density, sufficient mechanical strength, and reduced gas permeability is challenging. Herein, we report the development of a series of aromatic sulfonic acid/graphene oxide hybrid membranes incorporating benzene sulfonic acid (BS), naphthalene sulfonic acid (NS), naphthalene disulfonic acid (DS) or pyrene sulfonic acid (PS) using a facile freeze dried method. For out-of-plane proton conductivity, the 3DGO-BS and 3DGO-NS yielded proton conductivities of 4.4×10-2 S cm-1 and 3.1×10-2 S cm-1 , respectively; this represents a two-times higher value than that which occurs for three dimensional graphene oxide (3DGO). Additionally, the respective prepared films as membranes in a proton exchange membrane fuel cell (PEMFC) show maximum power density of 98.76 mW cm-2 for 3DGO-NS while it is 92.75 mW cm-2 for 3DGO-BS which are close to double that obtained for 3DGO (50 mW cm-2 ).
Collapse
Affiliation(s)
- Mohammad Atiqur Rahman
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Md Saidul Islam
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Mashahiro Fukuda
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Junya Yagyu
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Zhiqing Feng
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Yoshihiro Sekine
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, 2006, Sydney, New South Wales, Australia
| | - Junya Ohyama
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
- Division of Materials Science and Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| | - Shinya Hayami
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
- Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
- International Research Center for Agricultural and Environmental Biology (IRCAEB), 2-39-1 Kurokami, Chuo-ku, 860-8555, Kumamoto, Japan
| |
Collapse
|