1
|
Yang Z, Li F, Shen S, Wang X, Nihmot Ibrahim A, Zheng H, Zhang J, Ji X, Liao X, Zhang Y. Natural chlorophyll: a review of analysis methods, health benefits, and stabilization strategies. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38795062 DOI: 10.1080/10408398.2024.2356259] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Chlorophyll (Chl) is a natural pigment, widely distributed ranging from photosynthetic prokaryotes to higher plants, with an annual yield of up to 1.2 billion tons worldwide. Five types of Chls are observed in nature, that can be distinguished and identified using spectroscopy and mass spectrometry. Chl is also used in the food industry owing to its bioactivities, including obesity prevention, inflammation reduction, viral infection inhibition, anticancer effects, anti-oxidation, and immunostimulatory properties. It has great potential of being applied as a colorant and dietary supplement in the food industry. However, Chl is unstable under various enzymatic, acidic, heat, and light conditions, which limit its application. Although some strategies, such as aggregation with other food components, microencapsulation, and metal cation replacement, have been proposed to overcome these limitations, they are still not enough to facilitate its widespread application. Therefore, stabilization strategies and bioactivities of Chl need to be expected to expand its application in various fields, thereby aiding in the sustainable development of mankind.
Collapse
Affiliation(s)
- Zhaotian Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
- Sanya Institute of China Agricultural University, Sanya, PR China
| | - Fangwei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
- College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Suxia Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Xiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Ajibola Nihmot Ibrahim
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Hongli Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Jinghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Xingyu Ji
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
| | - Yan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- National Engineering Research Center for Fruits and Vegetables Processing Ministry of Science and Technology, China Agricultural University, Beijing, PR China
- Key Laboratory of Fruits and Vegetables Processing Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, PR China
- Sanya Institute of China Agricultural University, Sanya, PR China
| |
Collapse
|
2
|
Tanaka M, Tanaka A, Saga Y. Effects of peripheral substituents on epimerization kinetics of formylated chlorophylls. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
C132-[Formula: see text]-epimers of chlorophyll (Chl) molecules are important cofactors in the photosystem I reaction centers in oxygenic photosynthetic organisms; however, their production mechanism is still unclear. The reaction properties of Chl epimerization are helpful for a better understanding of the molecular mechanism of the in vivo formation of Chl C132-[Formula: see text]-epimers. We report herein the kinetic properties of the epimerization of formylated Chl molecules, Chl [Formula: see text] and Chl [Formula: see text], by use of triethylamine. Both Chl [Formula: see text] and Chl [Formula: see text] performed faster epimerization kinetics than Chl [Formula: see text], indicating that the electron-withdrawing ability of the formyl groups directly linked to the chlorin macrocycle is responsible for acceleration of the epimerization. Comparing the rate constants of the two mono-formylated Chl molecules indicated that the epimerization of Chl [Formula: see text] was faster than that of Chl [Formula: see text]. This difference is rationalized by invoking a combination of the inductive effects of the C3- and C7-substituents in Chls; the sums of Hammett [Formula: see text] parameters of the C3- and C7-substituents exhibited high correlations with the epimerization rate constants of Chls [Formula: see text], [Formula: see text], and [Formula: see text].
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Aiko Tanaka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
3
|
Wang YT, Yang CH, Huang KS, Shaw JF. Chlorophyllides: Preparation, Purification, and Application. Biomolecules 2021; 11:biom11081115. [PMID: 34439782 PMCID: PMC8392590 DOI: 10.3390/biom11081115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Chlorophyllides can be found in photosynthetic organisms. Generally, chlorophyllides have a-, b-, c-, d-, and f-type derivatives, and all chlorophyllides have a tetrapyrrole structure with a Mg ion at the center and a fifth isocyclic pentanone. Chlorophyllide a can be synthesized from protochlorophyllide a, divinyl chlorophyllide a, or chlorophyll. In addition, chlorophyllide a can be transformed into chlorophyllide b, chlorophyllide d, or chlorophyllide f. Chlorophyllide c can be synthesized from protochlorophyllide a or divinyl protochlorophyllide a. Chlorophyllides have been extensively used in food, medicine, and pharmaceutical applications. Furthermore, chlorophyllides exhibit many biological activities, such as anti-growth, antimicrobial, antiviral, antipathogenic, and antiproliferative activity. The photosensitivity of chlorophyllides that is applied in mercury electrodes and sensors were discussed. This article is the first detailed review dedicated specifically to chlorophyllides. Thus, this review aims to describe the definition of chlorophyllides, biosynthetic routes of chlorophyllides, purification of chlorophyllides, and applications of chlorophyllides.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-T.W.); (C.-H.Y.)
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-T.W.); (C.-H.Y.)
- Pharmacy Department of E-Da Hospital, Kaohsiung 82445, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei 106214, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
- Correspondence: (K.-S.H.); (J.-F.S.); Tel.: +886-7-6151100 (ext. 7063) (K.-S.H.); +886-7-6151100 (ext. 7310) (J.-F.S.); Fax: +886-7-6151959 (J.-F.S.)
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-T.W.); (C.-H.Y.)
- Correspondence: (K.-S.H.); (J.-F.S.); Tel.: +886-7-6151100 (ext. 7063) (K.-S.H.); +886-7-6151100 (ext. 7310) (J.-F.S.); Fax: +886-7-6151959 (J.-F.S.)
| |
Collapse
|
4
|
Hirose M, Harada J, Maeda H, Tamiaki H. Physicochemical and biochemical properties of synthetic zinc 131-(un)substituted chlorophyll-a derivatives. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Saga Y, Nakagawa S. Structural effects on epimerization of bacteriochlorophyll a and chlorophyll a revealed using 3-acetyl chlorophyll a. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chlorophyll (Chl) and bacteriochlorophyll (BChl) pigments, which are crucial cyclic tetrapyrroles in photosynthesis, generally have a chiral center in their exo-cyclic five-membered E-ring. Although [Formula: see text]-epimers (primed-type) of (B)Chl pigments are rarely present in photosynthetic organisms, they play key roles in photosynthetic reaction center complexes. The epimerization mechanism of (B)Chl pigments in vivo has not been unraveled. The structural effects on the physicochemical properties of (B)Chl epimerization reactions provide useful information to tackle this question. We analyzed epimerization of three pigments, BChl [Formula: see text], Chl [Formula: see text], and 3-acetyl Chl [Formula: see text], to elucidate the structural factors that are responsible for epimerization reactions. We compared the epimerization kinetics of the three pigments and concluded that the bacteriochlorin skeleton (7,8,17,18-tetrahydroporphyrin) significantly retarded the epimerization kinetics. Thus, BChl [Formula: see text] exhibited slower epimerization kinetics than Chl [Formula: see text] in spite of the presence of the electron-withdrawing 3-acetyl group that accelerates epimerization. In contrast to the large structural effects of (B)Chl molecules on epimerization kinetics, the thermodynamic properties at equilibrium in the epimerization of the three pigments were barely influenced by their molecular structures. This study also demonstrates that a semi-synthetic pigment, 3-acetyl Chl [Formula: see text], is appropriate for comparative analyses of the structural effects of BChl [Formula: see text] and Chl [Formula: see text] on their physicochemical properties.
Collapse
Affiliation(s)
- Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shiori Nakagawa
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
6
|
Belykh DV. C–O, C–S, C–N, and C–C Bond Formation at the Periphery of the Macrocycle during Chemical Modification of Phytochlorins: Key Methods and Synthetic Applications. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363219120430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Ogasawara S, Egami Y, Hirose M, Tamiaki H. Synthesis of chlorophyll-a homologs by C13 2-substitutions and their physico- and biochemical properties. Bioorg Chem 2019; 94:103383. [PMID: 31699394 DOI: 10.1016/j.bioorg.2019.103383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Abstract
A mixture of pheophytins-a/a', metal-free forms of photosynthetically active chlorophyll(Chl)s-a/a' bearing the 132-methoxycarbonyl group, was substituted at the C132-position by bimolecular nucleophilic substitution with methyl bromoacetate or Michael addition with methyl acrylate, followed by C132-demethoxycarbonylation and magnesium insertion at the central position, to afford Chl-a/a' homologs possessing a methoxycarbonylmethyl or 2-methoxycarbonylethyl group at the C132-position, respectively. These C132-methylene- and ethylene-inserted homologs were characterized by 1D/2D 1H NMR spectroscopy, and the optical properties of their C132-epimerically pure samples are investigated using visible absorption, fluorescence emission, and circular dichroism spectroscopies. The stereochemistry at the C132-chiral center of these Chl-a/a' homologs was not inverted in a basic solution, and the Chl-a homologs were effective for the substrates for the chlorophyllase reaction, hydrolysis of the phytyl ester.
Collapse
Affiliation(s)
- Shin Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yuki Egami
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Mitsuaki Hirose
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
8
|
Ogasawara S, Tamiaki H. Synthesis of methyl (132R/S)-alkyl-pyropheophorbide a and a non-epimerized chlorophyll a mimic. Bioorg Med Chem 2015; 23:6612-21. [DOI: 10.1016/j.bmc.2015.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/16/2022]
|
9
|
C132-Methylation of methyl pheophorbide a and stereoselective preparation of methyl (132R)-methylpyropheophorbide a. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Tamiaki H, Takebe H, Sasaki SI, Kataoka Y. Synthesis of oligomethylene-strapped chlorophyll derivatives and optical properties of their stereoisomers in a solution. PHOTOSYNTHESIS RESEARCH 2012; 111:1-8. [PMID: 21253859 DOI: 10.1007/s11120-010-9616-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/23/2010] [Indexed: 05/30/2023]
Abstract
Methyl pheophorbide-a/a' derivatives covalently linked with oligomethylene chains at the 3-CH(2)OCO- and 13(2)-COO- moieties in a molecule were prepared by modifying chlorophyll-a through intramolecular ring-closing metathesis of vinyl groups. At least, a C10-length between the 3(3)- and 13(4)-positions was necessary for the cyclization and connection of a C12-strap was the most suitable to achieve the highest closure yield. The oligomethylene chain in 13(2) R-epimers derived from methyl pheophorbide-a covered the α-face of the chlorin π-plane and the strap in the corresponding 13(2) S-epimers protected the β-face. Synthetic 13(2) R-epimer with a dodecamethylene chain gave a flat chlorin π-plane, while the decamethylene chain in the 13(2) R-epimer distorted the π-system due to its shorter linkage. The distortion by strapping in the 13(2) R-epimer induced a slight blue-shift of Qy peak in dichloromethane. CD spectra of the 13(2) R-epimers were similarly dependent on the chain length, i.e., the distortion of π-plane. Visible absorption and CD spectra of all the strapped 13(2) S-epimers were almost identical and only slightly different from those of the unstrapped. The strapping in the 13(2) S-epimers shifted the Qy peak bathochromically.
Collapse
Affiliation(s)
- Hitoshi Tamiaki
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| | | | | | | |
Collapse
|
11
|
Sasaki SI, Takebe H, Mizoguchi T, Tamiaki H. Synthesis of stereospecifically face-protected chlorophyll derivatives. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Oba T, Tamiaki H. Effects of peripheral substituents on diastereoselectivity of the fifth ligand-binding to chlorophylls, and nomenclature of the asymmetric axial coordination sites. Bioorg Med Chem 2005; 13:5733-9. [PMID: 15993082 DOI: 10.1016/j.bmc.2005.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 05/30/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
A preference for one of the two axial ligand-binding sites on the central metal atom of chlorophylls (Chls) and bacteriochlorophylls (BChls) was confirmed. In recently reported crystallographic data on PS2 and LHC2 complexes, there are 42 Chl molecules whose fifth ligands were identified; 33 of 42 molecules bound the fifth ligand at the axial position where the C13(2)-methoxycarbonyl group protrudes (denoting as the 'back'-type isomer). Among 151 (B)Chl a/b molecules found in eight types of (B)Chl proteins including PS2 and LHC2, 124 molecules (82%) are the 'back'-type isomers. Such a statistical selection was observed not only for Chl a but also for Chl b and BChls a/b, indicating that the C3-, C7-, and C8-substituents as well as the macrocyclic pi-conjugates would have little influence on the ligand-binding site. Computational examinations revealed that the energetic gap between the 'back' and its opposite 'face' complexes was inherent to (B)Chls and that the C13(2)-methoxycarbonyl moiety contributed relatively greatly to the diastereomeric preference in the ligand binding. Nomenclature of the two distinguishable sides on chlorophyllous macrocycles, as well as the two asymmetric ligand-binding sites, is also discussed.
Collapse
Affiliation(s)
- Toru Oba
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.
| | | |
Collapse
|
13
|
Furukawa H, Inoue N, Watanabe T, Kuroda K. Energy transfer between chlorophyll derivatives in silica mesostructured films and photocurrent generation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:3992-3997. [PMID: 15835966 DOI: 10.1021/la047845z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Layered silica/surfactant mesostructured thin films containing chlorophyllous pigments [C13(2)-demethoxycarbonyl-pheophytin b (pyroPheo b) or zinc C13(2)-demethoxycarbonyl-chlorophyll b (Zn-pyroChl b)] have been prepared on an indium tin oxide (ITO) electrode grafted with a chlorophyll derivative possessing a triethoxysilyl group (copper C13(2)-demethoxycarbonyl-chlorophyllide a 3-triethoxysilyl propylamide, Cu-APTES-Chl a) to achieve effective light harvesting and successive photocurrent generation by the mesostructured films. The incorporation of pyroPheo b and Zn-pyroChl b in the mesostructured film resulted in 1.2- and 1.6-fold increases of the photocurrent density, respectively, as compared to the case of an antenna pigment-free film also grafted to a surface-modified ITO electrode. The difference action spectra, between the electrodes with and without the antenna pigments, coincided well with the absorption spectra of the immobilized pigments. Because direct electron injection from the antenna pigments in the mesostructured films to the ITO electrode was scarcely observed, the energy transfer from the antenna pigments to Cu-APTES-Chl a plays an important role for the increase in photocurrent density. The usefulness of the mesostructured films as model systems is discussed in relation to the photosynthetic primary processes of higher plants.
Collapse
Affiliation(s)
- Hiroyasu Furukawa
- Energy Electronics Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | | | | | | |
Collapse
|
14
|
Kunieda M, Mizoguchi T, Tamiaki H. Syntheses and optical properties of stable 8-alkylidene-bacteriochlorins mimicking the molecular structures of natural bacteriochlorophylls-b and g. Tetrahedron 2004. [DOI: 10.1016/j.tet.2004.09.091] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Yoshida E, Nakamura A, Watanabe T. Reversed-phase HPLC determination of chlorophyll a' and naphthoquinones in photosystem I of red algae: existence of two menaquinone-4 molecules in photosystem I of Cyanidium caldarium. ANAL SCI 2003; 19:1001-5. [PMID: 12880082 DOI: 10.2116/analsci.19.1001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chlorophyll (Chl) a', the C13(2)-epimer of Chl a, is one of the two Chl molecules constituting the primary electron donor (P700) of photosystem (PS) I of a thermophilic cyanobacterium Synechococcus elongatus. To examine whether PS I of other oxygenic photosynthetic organisms in general contain one Chl a' molecule in P700, the pigment composition of thylakoid membranes and PS I preparations isolated from red algae Porphyridium purpureum and Cyanidium caldarium was examined by reversed-phase HPLC with particular attention to Chl a' and phylloquinone (PhQ), the secondary electron acceptor of PS I. The two red algae contained one Chl a' molecule at the core part of PS I. In PS I of C. caldarium, two menaquinone-4 (MQ-4) molecules were detected in place of PhQ used by higher plants and cyanobacteria. The 1:2:1 stoichiometry among Chl a', PhQ (MQ-4) and P700 in PS I of the red algae indicates that one Chl a' molecule universally exists in PS I of oxygenic photosynthetic organisms, and two MQ-4 molecules are associated with PS I of C. caldarium.
Collapse
Affiliation(s)
- Emi Yoshida
- Institute of Industrial Science, The University of Tokyo, Komaba, Meguro, Tokyo 153-8505, Japan
| | | | | |
Collapse
|
16
|
Nakamura A, Akai M, Yoshida E, Taki T, Watanabe T. Reversed-phase HPLC determination of chlorophyll a' and phylloquinone in Photosystem I of oxygenic photosynthetic organisms. Universal existence of one chlorophyll a' molecule in Photosystem I. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2446-58. [PMID: 12755700 DOI: 10.1046/j.1432-1033.2003.03616.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlorophyll (Chl) a', the C132-epimer of Chl a, is a constituent of the primary electron donor (P700) of Photosystem (PS) I of a thermophilic cyanobacterium Synechococcus (Thermosynechococcus) elongatus, as was recently demonstrated by X-ray crystallography. To determine whether PS I of oxygenic photosynthetic organisms universally contains one molecule of Chl a', pigment compositions of thylakoid membranes and PS I complexes isolated from the cyanobacteria T. elongatus and Synechocystis sp. PCC 6803, the green alga Chlamydomonas reinhardtii, and the green plant spinach, were examined by simultaneous detection of phylloquinone (the secondary electron acceptor of PS I) and Chl a' by reversed-phase HPLC. The results were compared with the Chl a/P700 ratio determined spectrophotometrically. The Chl a'/PS I ratios of thylakoid membranes and PS I were about 1 for all the organisms examined, and one Chl a' molecule was found in PS I even after most of the peripheral subunits were removed. Chl a' showed a characteristic extraction behaviour significantly different from the bulk Chl a in acetone/methanol extraction upon varying the mixing ratio. These findings confirm that a single Chl a' molecule in P700 is the universal feature of PS I of the Chl a-based oxygenic photosynthetic organisms.
Collapse
|
17
|
Furukawa H, Kuroda K. Effective inclusion of chlorophyllous pigments into mesoporous silica for the energy transfer between the chromophores. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0167-2991(03)80449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
18
|
Furukawa H, Kuroda K, Watanabe T. Adsorption of Zinc-Metallated Chlorophyllous Pigments on FSM-Type Mesoporous Silica. CHEM LETT 2000. [DOI: 10.1246/cl.2000.1256] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|