A Quasi-Solid State DSSC with 10.1% Efficiency through Molecular Design of the Charge-Separation and -Transport.
Sci Rep 2016;
6:28022. [PMID:
27311604 PMCID:
PMC4911559 DOI:
10.1038/srep28022]
[Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/27/2016] [Indexed: 02/02/2023] Open
Abstract
Organic-based solar cells potentially offer a photovoltaic module with low production costs and low hazard risk of the components. We report organic dye-sensitized solar cells, fabricated with molecular designed indoline dyes in conjunction with highly reactive but robust nitroxide radical molecules as redox mediator in a quasi-solid gel form of the electrolyte. The cells achieve conversion efficiencies of 10.1% at 1 sun, and maintain the output performance even under interior lighting. The indoline dyes, customized by introducing long alkyl chains, specifically interact with the radical mediator to suppress a charge-recombination process at the dye interface. The radical mediator also facilitates the charge-transport with remarkably high electron self-exchange rate even in the quasi-solid state electrolyte to lead to a high fill factor.
Collapse