1
|
Kim H, Nobeyama T, Honda S, Yasuda K, Morone N, Murakami T. Membrane fusogenic high-density lipoprotein nanoparticles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183008. [PMID: 31207206 DOI: 10.1016/j.bbamem.2019.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/23/2019] [Accepted: 06/11/2019] [Indexed: 11/30/2022]
Abstract
Membrane fusion under mildly acidic pH occurs naturally during viral infection in cells and has been exploited in the field of nanoparticle-mediated drug delivery to circumvent endosomal entrapment of the cargo. Herein, we aimed to confer virus-like fusogenic activity to HDL in the form of a ca. 10-nm disc comprising a discoidal lipid bilayer and two copies of a lipid-binding protein at the edge. A series of HDL mutants were prepared with a mixture of three lipids and a cell-penetrating peptide (TAT, penetratin, or Arg8) fused to the protein. In a lipid-mixing assay with anionic liposomes at pH 5.5, one HDL mutant showed the fusogenic activity higher than known fusogenic liposomes. In live mammalian cells, this HDL mutant showed high plasma membrane-binding activity in the presence of serum independent of pH. In the absence of serum, a mildly acidic pH dependency for binding to the plasma membrane and the subsequent lipid mixing between them was observed for this mutant. We propose a novel strategy to develop HDL-based drug carriers by taking advantage of the HDL lipid/protein composite structure.
Collapse
Affiliation(s)
- Hyungjin Kim
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomohiro Nobeyama
- Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinnosuke Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kaori Yasuda
- Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Nobuhiro Morone
- Medical Research Council Toxicology Unit, University of Cambridge, Leicester LE1 9HN, UK
| | - Tatsuya Murakami
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Sakyo-ku, Kyoto 606-8501, Japan; Department of Biotechnology, Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|