1
|
Devi MM, Singh OM, Prasanta Singh T. Synthesis of N-containing heterocycles in water. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
An organic reaction with water as a medium has numerous benefits, like improvement in reactivities and selectivities, simple workup techniques, possibility of recycling the catalyst with milder reaction conditions and eco-friendly synthesis. Further, exploring of water as a reaction medium gives rise to unusual reactivities and selectivities, supplementing the organic chemist’s necessity for reaction media. This review focus on the use of water for the synthesis of Nitrogen-containing heterocycles covering from 2011 to 2021.
Collapse
Affiliation(s)
| | - Okram Mukherjee Singh
- Chemistry Department , Manipur University , Canchipur-795003 , Manipur , Imphal , India
| | | |
Collapse
|
2
|
Shibata K, Takao KI, Ogura A. Diaryliodonium Salt-Based Synthesis of N-Alkoxyindolines and Further Insights into the Ishikawa Indole Synthesis. J Org Chem 2021; 86:10067-10087. [PMID: 34197104 DOI: 10.1021/acs.joc.1c00820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A diaryliodonium salt-based strategy enabled the first systematic synthesis of rarely accessible N-alkoxyindolines. Mechanistic analyses suggested that the reaction likely involves reductive elimination of iodobenzene from iodaoxazepine via a four-membered transition state, followed by Meisenheimer rearrangement. Substrates with N-carbamate protection afforded indole in a manner similar to that of the Ishikawa indole synthesis. Preinstallation of a stannyl group as an iodonium salt precursor greatly expanded the substrate scope, and further mechanistic insights are discussed.
Collapse
Affiliation(s)
- Kouhei Shibata
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ken-Ichi Takao
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Akihiro Ogura
- Department of Applied Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
3
|
Abstract
Indole is the most frequently found heterocyclic core structures in pharmaceuticals, natural products, agrochemicals, dyes and fragrances. For about 150 years, chemists were absorbed in finding new and easier synthetic strategies to build this nucleus. Many books and reviews have been written, but the number of new syntheses that appear in the literature, make necessary continuous updates. This reviews aims to give a comprehensive overview on indole synthesis catalyzed by transition metals appeared in the literature in the years 2016 and 2017.
Collapse
|
4
|
Ohtaka A, Fukui S, Sakon A, Hamasaka G, Uozumi Y, Shinagawa T, Shimomura O, Nomura R. Linear polystyrene-stabilized Rh(III) nanoparticles for oxidative coupling of arylboronic acids with alkenes in water. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Ohtaka A, Kawase M, Aihara S, Miyamoto Y, Terada A, Nakamura K, Hamasaka G, Uozumi Y, Shinagawa T, Shimomura O, Nomura R. Poly(tetrafluoroethylene)-Stabilized Metal Nanoparticles: Preparation and Evaluation of Catalytic Activity for Suzuki, Heck, and Arene Hydrogenation in Water. ACS OMEGA 2018; 3:10066-10073. [PMID: 31459135 PMCID: PMC6645410 DOI: 10.1021/acsomega.8b01338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/18/2018] [Indexed: 06/10/2023]
Abstract
Poly(tetrafluoroethylene)-stabilized Pd nanoparticles (PTFE-PdNPs) were prepared in water with 4-methylphenylboronic acid as a reductant and characterized using powder X-ray diffraction, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Small PdNPs with a fairly uniform size were obtained in the presence of PTFE, whereas aggregation of palladium was observed in the absence of PTFE. PTFE-PdNPs showed high catalytic activity for the Suzuki coupling reaction in water and were reused without any loss of activity. No palladium species were observed by ICP-AES analysis in the reaction solution after the reaction, nor was any change in particle size observed after the recycle experiment. PTFE-PdNPs also exhibited excellent catalytic activity and reusability for the Heck reaction in water. Although palladium species were not detected in the reaction solution after the reaction, aggregates and smaller sizes of PdNPs were observed in the TEM image of the recovered catalyst. PTFE was also useful as the stabilizer of rhodium nanoparticles (RhNPs) prepared by reduction with NaBH4. PTFE-RhNPs showed high catalytic activity and reusability toward arene hydrogenation under mild conditions.
Collapse
Affiliation(s)
- Atsushi Ohtaka
- Department
of Applied Chemistry, Faculty of Engineering, and Nanomaterials
and Microdevices Research Center, Osaka
Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Misa Kawase
- Department
of Applied Chemistry, Faculty of Engineering, and Nanomaterials
and Microdevices Research Center, Osaka
Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Shunichiro Aihara
- Department
of Applied Chemistry, Faculty of Engineering, and Nanomaterials
and Microdevices Research Center, Osaka
Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Yasuhiro Miyamoto
- Department
of Applied Chemistry, Faculty of Engineering, and Nanomaterials
and Microdevices Research Center, Osaka
Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Ayaka Terada
- Department
of Applied Chemistry, Faculty of Engineering, and Nanomaterials
and Microdevices Research Center, Osaka
Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Kenta Nakamura
- Department
of Applied Chemistry, Faculty of Engineering, and Nanomaterials
and Microdevices Research Center, Osaka
Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Go Hamasaka
- Institute
for Molecular Science (IMS), Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | - Yasuhiro Uozumi
- Institute
for Molecular Science (IMS), Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | - Tsutomu Shinagawa
- Electronic
Materials Research Division, Morinomiya Center, Osaka Research Institute of Industrial Science and Technology, Joto-ku, Osaka 536-8553, Japan
| | - Osamu Shimomura
- Department
of Applied Chemistry, Faculty of Engineering, and Nanomaterials
and Microdevices Research Center, Osaka
Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| | - Ryôki Nomura
- Department
of Applied Chemistry, Faculty of Engineering, and Nanomaterials
and Microdevices Research Center, Osaka
Institute of Technology, 5-16-1 Ohmiya, Asahi, Osaka 535-8585, Japan
| |
Collapse
|
7
|
Kitanosono T, Masuda K, Xu P, Kobayashi S. Catalytic Organic Reactions in Water toward Sustainable Society. Chem Rev 2017; 118:679-746. [PMID: 29218984 DOI: 10.1021/acs.chemrev.7b00417] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Traditional organic synthesis relies heavily on organic solvents for a multitude of tasks, including dissolving the components and facilitating chemical reactions, because many reagents and reactive species are incompatible or immiscible with water. Given that they are used in vast quantities as compared to reactants, solvents have been the focus of environmental concerns. Along with reducing the environmental impact of organic synthesis, the use of water as a reaction medium also benefits chemical processes by simplifying operations, allowing mild reaction conditions, and sometimes delivering unforeseen reactivities and selectivities. After the "watershed" in organic synthesis revealed the importance of water, the development of water-compatible catalysts has flourished, triggering a quantum leap in water-centered organic synthesis. Given that organic compounds are typically practically insoluble in water, simple extractive workup can readily separate a water-soluble homogeneous catalyst as an aqueous solution from a product that is soluble in organic solvents. In contrast, the use of heterogeneous catalysts facilitates catalyst recycling by allowing simple centrifugation and filtration methods to be used. This Review addresses advances over the past decade in catalytic reactions using water as a reaction medium.
Collapse
Affiliation(s)
- Taku Kitanosono
- Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koichiro Masuda
- Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Pengyu Xu
- Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo , Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Sakon A, Ii R, Hamasaka G, Uozumi Y, Shinagawa T, Shimomura O, Nomura R, Ohtaka A. Detailed Mechanism for Hiyama Coupling Reaction in Water Catalyzed by Linear Polystyrene-Stabilized PdO Nanoparticles. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Go Hamasaka
- Institute for Molecular Science (IMS), Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | - Yasuhiro Uozumi
- Institute for Molecular Science (IMS), Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan
| | - Tsutomu Shinagawa
- Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto, Osaka, 536-8553, Japan
| | | | | | | |
Collapse
|
9
|
Ohtaka A. Catalytic Activity of Linear Polystyrene-Stabilized Metal Nanoparticles in Water. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Atsushi Ohtaka
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology
| |
Collapse
|