1
|
Olivas-Alonso C, Flores Y, Martínez de Ilarduya A, Chiralt A, Torres-Giner S. Synthesis and Characterization of Fully Bio-Based Butylene Succinate Oligomers with Varying Molecular Weights for Sustainable Food Packaging Applications. Polymers (Basel) 2025; 17:1276. [PMID: 40363060 PMCID: PMC12073405 DOI: 10.3390/polym17091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
The development of bio-based and biodegradable materials is critical for reducing environmental impact and addressing global challenges associated with the extensive use of plastics in packaging applications. In this study, linear oligomers of butylene succinate (OBS) with three different molecular weights were synthesized using succinic acid (SA) and 1,4-butanediol (BDO), both monomers derived from biomass. The synthesized fully bio-based OBS samples were characterized in terms of their molecular structure, degree of polymerization, crystallinity, and thermal properties, showcasing their potential as additives for biopolymers in food packaging. Oligomers with weight-average molecular weight (Mw) values of 2050 g·mol-1 (OBS-L), 16,150 g·mol-1 (OBS-M), and 33,147 g·mol-1 (OBS-H), and Ð values in the 1.7-1.8 range were successfully synthesized. The results showed that the thermal degradation stability of OBS slightly increased, while the crystallinity decreased with increasing molecular weight. Furthermore, the analysis of the evolution of the lattice parameters suggested that oligomers with shorter chains favored crystal organization, resulting in a crystal unit cell with denser packing.
Collapse
Affiliation(s)
- Carmen Olivas-Alonso
- University Institute of Food Engineering—FoodUPV, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain; (C.O.-A.); (Y.F.); (A.C.)
| | - Yaiza Flores
- University Institute of Food Engineering—FoodUPV, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain; (C.O.-A.); (Y.F.); (A.C.)
| | - Antxon Martínez de Ilarduya
- ETSEIB, Chemical Engineering Department, Universitat Politècnica de Catalunya · BarcelonaTech, Diagonal 647, Planta G 1E, 08028 Barcelona, Spain;
| | - Amparo Chiralt
- University Institute of Food Engineering—FoodUPV, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain; (C.O.-A.); (Y.F.); (A.C.)
| | - Sergio Torres-Giner
- University Institute of Food Engineering—FoodUPV, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain; (C.O.-A.); (Y.F.); (A.C.)
| |
Collapse
|
2
|
Zhao P, Chen W, Feng Z, Liu Y, Liu P, Xie Y, Yu DG. Electrospun Nanofibers for Periodontal Treatment: A Recent Progress. Int J Nanomedicine 2022; 17:4137-4162. [PMID: 36118177 PMCID: PMC9480606 DOI: 10.2147/ijn.s370340] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a major threat to oral health, prompting scientists to continuously study new treatment techniques. The nanofibrous membrane prepared via electrospinning has a large specific surface area and high porosity. On the one hand, electrospun nanofibers can improve the absorption capacity of proteins and promote the expression of specific genes. On the other hand, they can improve cell adhesion properties and prevent fibroblasts from passing through the barrier membrane. Therefore, electrospinning has unique advantages in periodontal treatment. At present, many oral nanofibrous membranes with antibacterial, anti-inflammatory, and tissue regeneration properties have been prepared for periodontal treatment. First, this paper introduces the electrospinning process. Then, the commonly used polymers of electrospun nanofibrous membranes for treating periodontitis are summarized. Finally, different types of nanofibrous membranes prepared via electrospinning for periodontal treatment are presented, and the future evolution of electrospinning to treat periodontitis is described.
Collapse
Affiliation(s)
- Ping Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Wei Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Zhangbin Feng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Yukang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, 200433, People's Republic of China.,Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yufeng Xie
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, People's Republic of China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, 200093, People's Republic of China
| |
Collapse
|
3
|
Yoshida T, Kaibori M, Fujisawa N, Ishizuka M, Sumiyama F, Hatta M, Kosaka H, Matsui K, Suzuki K, Akama TO, Katano T, Yoshii K, Ebara M, Sekimoto M. Efficacy of Nanofiber Sheets Incorporating Lenvatinib in a Hepatocellular Carcinoma Xenograft Model. NANOMATERIALS 2022; 12:nano12081364. [PMID: 35458072 PMCID: PMC9025678 DOI: 10.3390/nano12081364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 11/10/2022]
Abstract
Lenvatinib has a high response rate in unresectable advanced hepatocellular carcinoma (HCC). In this study, we investigated whether lenvatinib-incorporating poly(ε-caprolactone) sheets (lenvatinib sheets) as a drug delivery system (DDS) exerted antitumor effects in a murine HCC model. The lenvatinib sheets were designed for sustained release of approximately 1 mg lenvatinib for 14 days. For 14 days, 1 mg lenvatinib was orally administered to mice. Then, we compared the antitumor effects of lenvatinib sheets with those of oral lenvatinib. The tumor volume, body weight, and serum lenvatinib level were measured for 14 days. A peritoneal dissemination model was established to examine the survival prolongation effect of the lenvatinib sheets. Tumor growth was significantly inhibited in the lenvatinib sheet group compared with that in the no treatment and oral groups. The antitumor effect was significantly higher in the lenvatinib sheet group. Regardless of the insertion site, the serum lenvatinib levels were maintained and showed similar antitumor effects. The mitotic index was significantly inhibited in the lenvatinib sheet group compared with that in the control group. Furthermore, lenvatinib sheets improved the 30-day survival. Lenvatinib sheets showed sufficient antitumor effects and may serve as an effective novel DDS for advanced HCC.
Collapse
Affiliation(s)
- Terufumi Yoshida
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
- Correspondence: ; Tel.: +81-72-804-0101 (ext. 56130)
| | - Nanami Fujisawa
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; (N.F.); (M.E.)
| | - Mariko Ishizuka
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| | - Fusao Sumiyama
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| | - Masahiko Hatta
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| | - Hisashi Kosaka
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| | - Kosuke Matsui
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| | - Kensuke Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Hirakata 573-1010, Japan;
| | - Tomoya O. Akama
- Department of Pharmacology, Kansai Medical University, Hirakata 573-1010, Japan;
| | - Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan;
| | - Kengo Yoshii
- Department of Mathematics and Statistics in Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan;
| | - Mitsuhiro Ebara
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan; (N.F.); (M.E.)
| | - Mitsugu Sekimoto
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (T.Y.); (M.I.); (F.S.); (M.H.); (H.K.); (K.M.); (M.S.)
| |
Collapse
|