1
|
Tanita K, Koseki Y, Kumar S, Taemaitree F, Mizutani A, Nakatsuji H, Suzuki R, Dao ATN, Fujishima F, Tada H, Ishida T, Saijo K, Ishioka C, Kasai H. Carrier-free nano-prodrugs for minimally invasive cancer therapy. NANOSCALE 2024; 16:15256-15264. [PMID: 39073351 DOI: 10.1039/d4nr01763c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
An anticancer nanodrug with few side effects that does not require the use of a nanocarrier, polyethylene glycol, or other additives has been developed. We have fabricated nano-prodrugs (NPDs) composed only of homodimeric prodrugs of the anticancer agent SN-38, which contains a disulfide bond. The prodrugs are stable against hydrolysis but selectively release SN-38 when the disulfide bond is cleaved by glutathione, which is present in high concentrations in cancer cells. The best-performing NPDs showed good dispersion stability in nanoparticle form, and animal experiments revealed that they possess much higher antitumor activity than irinotecan, a clinically applied prodrug of SN-38. This performance was achieved by improving tumor accumulation due to the size effect and targeted drug release mechanism. The present study provides an insight into the development of non-invasive NPDs with high pharmacological activity, and also offers new possibilities for designing prodrug molecules that can release drugs in response to various kinds of triggers.
Collapse
Affiliation(s)
- Keita Tanita
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
- Research Institute for Electronic Science, Hokkaido University, N20W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Sanjay Kumar
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Farsai Taemaitree
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
- Research Institute for Electronic Science, Hokkaido University, N20W10, Kita-ku, Sapporo, 001-0020, Japan
| | - Asuka Mizutani
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Hirotaka Nakatsuji
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Ryuju Suzuki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| | - Anh Thi Ngoc Dao
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Fumiyoshi Fujishima
- Department of Pathology, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Ken Saijo
- Department of Medical Oncology, Tohoku University Hospital, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
4
|
Cui Q, Tian ZY, Yu ZX. Rhodium(I)-Catalyzed Three-Component [4+2+1] Cycloaddition of Two Vinylallenes and CO. Chemistry 2021; 27:5638-5641. [PMID: 33377219 DOI: 10.1002/chem.202005443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Transition metal-catalyzed [4+2+1] reactions of dienes (or diene derivatives such as vinylallenes), alkynes/alkenes, and CO (or carbenes) are expected to be the most straightforward approach to synthesize challenging seven-membered ring compounds, but so far only limited successes have been realized. Here, an unexpected three-component [4+2+1] reaction between two vinylallenes and CO was discovered to give highly functionalized tropone derivatives under mild conditions, where one vinylallene acts as a C4 synthon, the other vinylallene as a C2 synthon, and CO as a C1 synthon. It was proposed that this reaction occurred via oxidative cyclization of the diene part of one vinylallene molecule, followed by insertion of the terminal alkene part of the allene moiety in another vinylallene, into the Rh-C bond of five-membered rhodacycle. Then, CO insertion and reductive elimination gave the [4+2+1] cycloadduct. Further experimental exploration of why ene/yne-vinylallenes and CO gave monocyclic tropone derivatives instead of 6/7-bicyclic ring products were reported here.
Collapse
Affiliation(s)
- Qi Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Zi-You Tian
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|