1
|
Zhu X, Li J, He H, Huang M, Zhang X, Wang S. Application of nanomaterials in the bioanalytical detection of disease-related genes. Biosens Bioelectron 2015; 74:113-33. [PMID: 26134290 DOI: 10.1016/j.bios.2015.04.069] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/09/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences.
Collapse
Affiliation(s)
- Xiaoqian Zhu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Jiao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Hanping He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China.
| | - Min Huang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, College of Materials Science and Engineering, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062, PR China
| |
Collapse
|
2
|
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112:2739-79. [PMID: 22295941 PMCID: PMC4102386 DOI: 10.1021/cr2001178] [Citation(s) in RCA: 2836] [Impact Index Per Article: 218.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarit S. Agasti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Matsui J, Takayose M, Akamatsu K, Nawafune H, Tamaki K, Sugimoto N. Molecularly imprinted nanocomposites for highly sensitive SPR detection of a non-aqueous atrazine sample. Analyst 2009; 134:80-6. [DOI: 10.1039/b803350a] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Okumura A, Sato Y, Kyo M, Kawaguchi H. Point mutation detection with the sandwich method employing hydrogel nanospheres by the surface plasmon resonance imaging technique. Anal Biochem 2005; 339:328-37. [PMID: 15797574 DOI: 10.1016/j.ab.2005.01.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Indexed: 11/27/2022]
Abstract
We propose a surface modification procedure to construct DNA arrays for use in surface plasmon resonance (SPR) imaging studies for the highly sensitive detection of a K-ras point mutation, enhanced with hydrogel nanospheres. A homobifunctional alkane dithiol was adsorbed on Au film to obtain the thiol surface, and ethyleneglycol diglycidylether (EGDE) was reacted to insert the ethyleneglycol moiety, which can suppress nonspecific adsorption during SPR analysis. Then streptavidin (SA) was immobilized on EGDE using tosyl chloride activation. Biotinylated DNA ligands were bound to the SA surface via biotin-SA interaction to fabricate DNA arrays. In SPR analysis, the DNA analyte was exposed on the DNA array and hybridized with the immobilized DNA probes. Subsequently, the hydrogel nanospheres conjugated with DNA probes were bound to the DNA analytes in a sandwich configuration. The DNA-carrying nanospheres led to SPR signal enhancement and enabled us to discriminate a K-ras point mutation in the SPR difference image. The application of DNA-carrying hydrogel nanospheres for SPR imaging assays was a promising technique for high throughput and precise detection of point mutations.
Collapse
Affiliation(s)
- Aya Okumura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
| | | | | | | |
Collapse
|
5
|
MORITA K, UCHIDA T, SAKURAI C, TERAMAE N. Adsorption of 5'-Thiolated DNA on a Gold Electrode Surface as Studied by a Quartz Crystal Microbalance and Electrochemical Measurements. BUNSEKI KAGAKU 2005. [DOI: 10.2116/bunsekikagaku.54.555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Kotaro MORITA
- Department of Chemistry, Graduate School of Science, Tohoku University
| | - Tatsuya UCHIDA
- School of Life Science, Tokyo University of Pharmacy and Life Science
| | - Chizuru SAKURAI
- Department of Chemistry, Graduate School of Science, Tohoku University
| | - Norio TERAMAE
- Department of Chemistry, Graduate School of Science, Tohoku University
| |
Collapse
|