Fluorescence ratiometric DNA detection by peptide nucleic acid-pyrene binary probes.
Bioorg Med Chem Lett 2022;
71:128838. [PMID:
35654301 DOI:
10.1016/j.bmcl.2022.128838]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022]
Abstract
We developed a method for detecting DNA by excimer fluorescence from two peptide nucleic acids (PNAs) modified with a pyrene (Pyr). The two PNA-Pyr probes were prepared by solid-phase peptide synthesis, and we assessed fluorescence from the mixture of probes with DNA. From the results, excimer fluorescence derived from the two PNA-Pyr probes forming hybrids with the complementary DNA was observed, and the two probes showed the maximum excimer/monomer ratio when the probes and DNA were hybridized at a 1:1:1 ratio, indicating that the PNA-Pyr probes can detect target DNA. Furthermore, we adjusted the spatial arrangement between the two PNA-Pyr hybrids formed on the DNA to promote optimal excimer formation. As a result, optimal excimer formation was achieved by spacing the two nucleobases between the formed two hybrids and further inserting a hexamethylene linker (C6) between the PNA and Pyr of the PNA-Pyr probe on one side.
Collapse