1
|
Texter J, Li Q, Yan F. Leaflet-heterostructures by MWCNT self-assembly following electrospinning. iScience 2024; 27:110186. [PMID: 39021789 PMCID: PMC11253149 DOI: 10.1016/j.isci.2024.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Electrospinning of nanocarbons such as graphene and carbon nanotubes typically produces mats composed of one-dimensional fibers where the carrier polymer encapsulates the nanocarbons. Recently it was found that decreasing the amount of carrier polymer in approaching the electrospinning-electrospray boundary for graphene suspensions resulted in retention of the graphene two-dimensional anisotropy with one-dimensional carrier polymer fibers connecting flakes. We explored a similar decrease in carrier polymer in MWCNT suspensions to investigate the network topology that might ensue. Unexpectedly, two-dimensional leaflet meso-networks were obtained wherein the leaflets comprise laterally aligned MWCNTs one to several nanotubes thick. A mechanism based on capillary force-driven MWCNT self-assembly activated by menisci formed during drying of electrospun fibers is presented. Such materials offer new approaches to producing high surface-area coatings for catalytic and energy applications and suggest ways of formulating two-dimensional MWCNT assemblies in metal foams and other open-cell porous materials.
Collapse
Affiliation(s)
- John Texter
- Strider Research Corporation, Rochester, NY 14610-2246, USA
- Coating Research Institute, School of Engineering, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Qi Li
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Abstract
The breadth and importance of polymerized ionic liquids (PILs) are steadily expanding, and this review updates advances and trends in syntheses, properties, and applications over the past five to six years. We begin with an historical overview of the genesis and growth of the PIL field as a subset of materials science. The genesis of ionic liquids (ILs) over nano to meso length-scales exhibiting 0D, 1D, 2D, and 3D topologies defines colloidal ionic liquids, CILs, which compose a subclass of PILs and provide a synthetic bridge between IL monomers (ILMs) and micro to macro-scale PIL materials. The second focus of this review addresses design and syntheses of ILMs and their polymerization reactions to yield PILs and PIL-based materials. A burgeoning diversity of ILMs reflects increasing use of nonimidazolium nuclei and an expanding use of step-growth chemistries in synthesizing PIL materials. Radical chain polymerization remains a primary method of making PILs and reflects an increasing use of controlled polymerization methods. Step-growth chemistries used in creating some CILs utilize extensive cross-linking. This cross-linking is enabled by incorporating reactive functionalities in CILs and PILs, and some of these CILs and PILs may be viewed as exotic cross-linking agents. The third part of this update focuses upon some advances in key properties, including molecular weight, thermal properties, rheology, ion transport, self-healing, and stimuli-responsiveness. Glass transitions, critical solution temperatures, and liquidity are key thermal properties that tie to PIL rheology and viscoelasticity. These properties in turn modulate mechanical properties and ion transport, which are foundational in increasing applications of PILs. Cross-linking in gelation and ionogels and reversible step-growth chemistries are essential for self-healing PILs. Stimuli-responsiveness distinguishes PILs from many other classes of polymers, and it emphasizes the importance of segmentally controlling and tuning solvation in CILs and PILs. The fourth part of this review addresses development of applications, and the diverse scope of such applications supports the increasing importance of PILs in materials science. Adhesion applications are supported by ionogel properties, especially cross-linking and solvation tunable interactions with adjacent phases. Antimicrobial and antifouling applications are consequences of the cationic nature of PILs. Similarly, emulsion and dispersion applications rely on tunable solvation of functional groups and on how such groups interact with continuous phases and substrates. Catalysis is another significant application, and this is an historical tie between ILs and PILs. This component also provides a connection to diverse and porous carbon phases templated by PILs that are catalysts or serve as supports for catalysts. Devices, including sensors and actuators, also rely on solvation tuning and stimuli-responsiveness that include photo and electrochemical stimuli. We conclude our view of applications with 3D printing. The largest components of these applications are energy related and include developments for supercapacitors, batteries, fuel cells, and solar cells. We conclude with our vision of how PIL development will evolve over the next decade.
Collapse
Affiliation(s)
- Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, PR China
| | - Feng Yan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - John Texter
- Strider Research Corporation, Rochester, New York 14610-2246, United States
- School of Engineering, Eastern Michigan University, Ypsilanti, Michigan 48197, United States
| |
Collapse
|
3
|
Aldroubi S, Brun N, Bou Malham I, Mehdi A. When graphene meets ionic liquids: a good match for the design of functional materials. NANOSCALE 2021; 13:2750-2779. [PMID: 33533392 DOI: 10.1039/d0nr06871c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Graphene is an attractive material that is characterized by its exceptional properties (i.e. electrical, mechanical, thermal, optical, etc.), which have pushed researchers to attach high interest to its production and functionalization processes to meet applications in different fields (electronics, electromagnetics, composites, sensors, energy storage, etc.). The synthesis (bottom-up) of graphene remains long and laborious, at the same time expensive, and it is limited to the development of this material in low yield. Hence, the use of graphite as a starting material (top-down through exfoliation or oxidation) seems a promising and easy technique for producing a large quantity of graphene or graphene oxide (GO). On the one hand, GO has been extensively studied due to its ease of synthesis, processing and chemical post-functionalization. One the other hand, "pristine" graphene sheets, obtained through exfoliation, are limited in processability but present enhanced electronic properties. Both types of materials have been of great interest to design functional nanomaterials. Ionic liquids (ILs) are task-specific solvents that exhibit tunable physico-chemical properties. ILs have many advantages as compared with conventional solvents, such as high thermal and chemical stability, low volatility, excellent conductivity and inherent polarity. In the last decade, ILs have been widely employed for the preparation and stabilization of various nanomaterials. In particular, the combination of ILs and graphene, including GO and pristine graphene sheets, has been of growing interest for the preparation, processing and functionalization of hybrid nanomaterials. Understanding the structure and properties of the graphene/IL interface has been of considerable interest for a large panel of applications ranging from tribology to energy storage.
Collapse
Affiliation(s)
- Soha Aldroubi
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | | | | |
Collapse
|
4
|
Affiliation(s)
- Harshit Gupta
- Coatings Research InstituteEastern Michigan University Ypsilanti, MI 48197 USA
| | - John Texter
- Coatings Research InstituteEastern Michigan University Ypsilanti, MI 48197 USA
| |
Collapse
|
5
|
Qian W, Texter J, Yan F. Frontiers in poly(ionic liquid)s: syntheses and applications. Chem Soc Rev 2018; 46:1124-1159. [PMID: 28180218 DOI: 10.1039/c6cs00620e] [Citation(s) in RCA: 529] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We review recent works on the synthesis and application of poly(ionic liquid)s (PILs). Novel chemical structures, different synthetic strategies and controllable morphologies are introduced as a supplement to PIL systems already reported. The primary properties determining applications, such as ionic conductivity, aqueous solubility, thermodynamic stability and electrochemical/chemical durability, are discussed. Furthermore, the near-term applications of PILs in multiple fields, such as their use in electrochemical energy materials, stimuli-responsive materials, carbon materials, and antimicrobial materials, in catalysis, in sensors, in absorption and in separation materials, as well as several special-interest applications, are described in detail. We also discuss the limitations of PIL applications, efforts to improve PIL physics, and likely future developments.
Collapse
Affiliation(s)
- Wenjing Qian
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | - John Texter
- School of Engineering Technology, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
6
|
Texter J, Kuriakose N, Shendre S, Lewis K, Venkatraman S, Gupta H. Stimuli-responsively porating gels by condensation. Chem Commun (Camb) 2018; 54:503-506. [PMID: 29261191 DOI: 10.1039/c7cc06408j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polyurethane (PU) resin derived from glycerol and hexamethylene diisocyanate and an imidazolium bromide ionic liquid chain terminator yield a stimuli-responsive resin that reversibly porates as a solvation response.
Collapse
Affiliation(s)
- John Texter
- Coatings Research Institute, School of Engineering Technology, Eastern Michigan University, Ypsilanti, MI 48197, USA.
| | | | | | | | | | | |
Collapse
|
7
|
He Z, Alexandridis P. Ionic liquid and nanoparticle hybrid systems: Emerging applications. Adv Colloid Interface Sci 2017; 244:54-70. [PMID: 27567031 DOI: 10.1016/j.cis.2016.08.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 08/02/2016] [Accepted: 08/02/2016] [Indexed: 02/02/2023]
Abstract
Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure.
Collapse
Affiliation(s)
- Zhiqi He
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, USA.
| |
Collapse
|
8
|
Wei Y, Sun Z. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Curr Opin Colloid Interface Sci 2015. [DOI: 10.1016/j.cocis.2015.10.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
|
10
|
Abstract
Recent developments of polymerization in ionic liquid-based microemulsions and its applications are reviewed, along with the perspectives and challenges.
Collapse
Affiliation(s)
- Chao Yuan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhihong Si
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
11
|
Ager D, Vasantha VA, Crombez R, Texter J. Aqueous graphene dispersions-optical properties and stimuli-responsive phase transfer. ACS NANO 2014; 8:11191-11205. [PMID: 25337632 DOI: 10.1021/nn502946f] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate essentially complete exfoliation of graphene aggregates in water at concentrations up to 5% by weight (166-fold greater than previous high concentration report) using recently developed triblock copolymers and copolymeric nanolatexes based on a reactive ionic liquid acrylate surfactant. We demonstrate that the visible absorption coefficient in aqueous dispersion, 48.9 ± 1.3 cm(2)/mg at 500 nm, is about twice that currently accepted, and we show that this value is a greatest lower bound to extant macroscopic single sheet optical studies of graphene when one considers both fine structure constant and excitonic mechanisms of visible absorption. We also show that dilute and concentrated graphene dispersions are rheo-optical fluids that exhibit an isotropic to nematic transition upon application of a shear field, and we demonstrate stimuli-responsive phase transfer.
Collapse
Affiliation(s)
- David Ager
- Coating Research Institute and School of Engineering Technology, College of Technology, Eastern Michigan University , Ypsilanti, Michigan 48197, United States
| | | | | | | |
Collapse
|
12
|
|
13
|
Gu H, Texter J. Anion and solvent responsive copolymeric gels – Morphology, annealing, and surfactant stimuli. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
|
15
|
Grygiel K, Wicklein B, Zhao Q, Eder M, Pettersson T, Bergström L, Antonietti M, Yuan J. Omnidispersible poly(ionic liquid)-functionalized cellulose nanofibrils: surface grafting and polymer membrane reinforcement. Chem Commun (Camb) 2014; 50:12486-9. [DOI: 10.1039/c4cc04683h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(ionic liquid)s were grafted onto cellulose nanofibrils (CNFs) to provide superior dispersibility to CNFs in water and various organic solvents.
Collapse
Affiliation(s)
- Konrad Grygiel
- Department of Colloid Chemistry
- Max Planck Institute of Colloids and Interfaces
- D-14476 Potsdam, Germany
| | - Bernd Wicklein
- Department of Materials and Environmental Chemistry
- Stockholm University
- Stockholm, Sweden
| | - Qiang Zhao
- Department of Colloid Chemistry
- Max Planck Institute of Colloids and Interfaces
- D-14476 Potsdam, Germany
| | - Michaela Eder
- Department of Biomaterials
- Max Planck Institute of Colloids and Interfaces
- D-14476 Potsdam, Germany
| | - Torbjörn Pettersson
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry
- Stockholm University
- Stockholm, Sweden
| | - Markus Antonietti
- Department of Colloid Chemistry
- Max Planck Institute of Colloids and Interfaces
- D-14476 Potsdam, Germany
| | - Jiayin Yuan
- Department of Colloid Chemistry
- Max Planck Institute of Colloids and Interfaces
- D-14476 Potsdam, Germany
| |
Collapse
|
16
|
Texter J. Anion Responsive Imidazolium-Based Polymers. Macromol Rapid Commun 2012; 33:1996-2014. [DOI: 10.1002/marc.201200525] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Indexed: 01/25/2023]
|