1
|
Qu P, Liu GQ. Recent progress in the organoselenium-catalyzed difunctionalization of alkenes. Org Biomol Chem 2025; 23:1552-1568. [PMID: 39810650 DOI: 10.1039/d4ob01553c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Selenium-based catalysts have recently been utilized to facilitate a variety of new organic transformations, owing to their intrinsic advantages, including low cost, low toxicity, stability in both air and water, and strong compatibility with diverse functional groups. The difunctionalization of alkenes-the process of incorporating two functional groups onto a carbon-carbon double bond-has garnered particular interest within the chemical community owing to its significant applications in organic synthesis. Recently, organoselenium-catalyzed difunctionalization of alkenes has emerged as an ideal and powerful route to obtain high-value vicinal difunctionalized molecules. This review emphasizes recent advancements in this rapidly evolving field, focusing on the scope, limitations, and mechanisms of various reactions.
Collapse
Affiliation(s)
- Pei Qu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| | - Gong-Qing Liu
- School of Pharmacy, Nantong Key Laboratory of Small Molecular Drug Innovation and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People's Republic of China.
| |
Collapse
|
2
|
Capperucci A, Tanini D. Recent Advances in Selenium-Mediated Redox Functional Group Interconversions. CHEM REC 2024; 24:e202400174. [PMID: 39578242 DOI: 10.1002/tcr.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/21/2024] [Indexed: 11/24/2024]
Abstract
The conversion of a functional group into another represents the core of organic synthesis. Within the arena of functional group interconversions, oxidative and reductive transformations occupy a privileged position and the development of new sustainable, selective, and general methodologies continue to attract significant interest. Owing to the versatility of their chemistry, selenium compounds offer significant opportunities to achieve both oxidation and reduction of a wide range of functional groups. Additionally, the possibility to generate in situ the active oxidant or reducing selenium species from suitable inert precursors enables the development of catalytic processes. In this review, recent advances in selenium-mediated oxidative and reductive functional group interconversions, with particular emphasis on cutting-edge researches bringing about new insights into the comprehension of their mechanistic aspects, will be discussed.
Collapse
Affiliation(s)
- Antonella Capperucci
- Department of Chemistry ''Ugo Schiff'', University of Florence, Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| | - Damiano Tanini
- Department of Chemistry ''Ugo Schiff'', University of Florence, Via della Lastruccia 3-13, I-50019, Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Barik P, Behera SS, Nayak LK, Nanda LN, Nanda SK, Patri P. Transition metal catalysed cascade C-C and C-O bond forming events of alkynes. Org Biomol Chem 2024; 22:5052-5086. [PMID: 38856756 DOI: 10.1039/d3ob02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The past few decades have witnessed the emergence of domino reactions as a powerful tool for the multi-functionalization of alkynes for the rapid and smooth construction of complex molecular architectures. In this context, employing transition metal catalysis, vicinal/geminal cascade functionalization of alkynes involving C-C and C-O bond-formation reactions, has become a preferred strategy for the synthesis of oxygenated motifs. Despite this significant progress, reviews documenting such strategies are either metal/functional group-centric or target-oriented, thus hampering further developments. Therefore, in this review, different conceptual approaches based on C-C and C-O bond-forming events of alkynes such as carboxygenation (C-C and CO bond formation), carboalkoxylation (C-C and C-OR bond formation), and carboacetoxylation (C-C and C-OAc bond formations) are discussed, and examples from the literature from the last two decades are presented. Further, we have presented detailed insights into the mechanism of different transformations.
Collapse
Affiliation(s)
- Padmanava Barik
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| | | | - Laxmi Kanta Nayak
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| | | | - Santosh Kumar Nanda
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| | - Padmanava Patri
- PG Department of Chemistry, Bhadrak Autonomous College, Bhadrak, Odisha, 756100, India.
| |
Collapse
|
4
|
Meyrelles R, Schupp M, Maryasin B. Mechanistic Study on Selenium- and Sulfur-Mediated Isomerization of Hydroxamic Acids. Chemistry 2023; 29:e202302386. [PMID: 37769009 DOI: 10.1002/chem.202302386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023]
Abstract
An in-depth computational study reveals the intriguing mechanism of the recently reported isomerization of hydroxamic acids into para-aminophenols catalyzed by phenylselenyl bromide under mild conditions. The computations not only align with the reported experimental data, effectively explaining observed phenomena such as para-selectivity but also shed light on crucial aspects of the reaction mechanism that establish limitations on the scope of the studied rearrangement. Additionally, a joint theoretical/experimental study was performed to examine the potency of the phenylsulfenyl bromide to mediate the reaction under the same conditions.
Collapse
Affiliation(s)
- Ricardo Meyrelles
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
| | - Manuel Schupp
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Währinger Straße 42, 1090, Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Boris Maryasin
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
| |
Collapse
|
5
|
Gao L, Wang ZF, Wang LW, Tang HT, Mo ZY, He MX. Electrochemical selenium-catalyzed para-amination of N-aryloxyamides: access to polysubstituted aminophenols. Org Biomol Chem 2023; 21:7895-7899. [PMID: 37747203 DOI: 10.1039/d3ob01116j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Aminophenols are a class of important compounds with various pharmacological activities such as anticancer, anti-inflammatory, antimalarial, and antibacterial activities. Herein, we introduce a mild and efficient electrochemical selenium-catalyzed strategy to synthesize polysubstituted aminophenols. High atom efficiency and transition metal-free and oxidant-free conditions are the striking features of this protocol. By merging electrochemical and organoselenium-catalyzed processes, the intramolecular rearrangement of N-aryloxyamides produces para-amination products at room temperature in a simple undivided cell.
Collapse
Affiliation(s)
- Lei Gao
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
| | - Zhi-Feng Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
- Department of Burn, Wound Repair Surgery and Plastic Surgery, Department of Aesthetic Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, People's Republic of China
| | - Lin-Wei Wang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
| | - Hai-Tao Tang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
| | - Zu-Yu Mo
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China
| | - Mu-Xue He
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, People's Republic of China.
- Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, People's Republic of China
| |
Collapse
|
6
|
da Costa GP, Blödorn GB, Barcellos AM, Alves D. Recent Advances in the Use of Diorganyl Diselenides as Versatile Catalysts. Molecules 2023; 28:6614. [PMID: 37764391 PMCID: PMC10534850 DOI: 10.3390/molecules28186614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The importance of organoselenium compounds has been increasing in synthetic chemistry. These reagents are well-known as electrophiles and nucleophiles in many organic transformations, and in recent years, their functionality as catalysts has also been largely explored. The interest in organoselenium-based catalysts is due to their high efficacy, mild reaction conditions, strong functional compatibility, and great selectivity. Allied to organoselenium catalysts, the use of inorganic and organic oxidants that act by regenerating the catalytic species for the reaction pathway is common. Here, we provide a comprehensive review of the last five years of organic transformations promoted by diorganyl diselenide as a selenium-based catalyst. This report is divided into four sections: (1) cyclisation reactions, (2) addition reactions and oxidative functionalisation, (3) oxidation and reduction reactions, and (4) reactions involving phosphorus-containing starting materials.
Collapse
Affiliation(s)
- Gabriel Pereira da Costa
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas 96010-900, Brazil;
| | - Gustavo Bierhals Blödorn
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas 96010-900, Brazil;
| | - Angelita Manke Barcellos
- Escola de Química e Alimentos, Universidade Federal do Rio Grande (FURG), Rio Grande 96203-900, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa (LASOL), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), Pelotas 96010-900, Brazil;
| |
Collapse
|
7
|
Baidya M, Dutta J, De Sarkar S. Electrochemical Organoselenium Catalysis for the Selective Activation of Alkynes: Easy Access to Carbonyl-pyrroles/oxazoles from N-Propargyl Enamines/Amides. Org Lett 2023; 25:3812-3817. [PMID: 37196050 DOI: 10.1021/acs.orglett.3c01355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Intramolecular electro-oxidative addition of enamines or amides to nonactivated alkynes was attained to access carbonyl-pyrroles or -oxazoles from N-propargyl derivatives. Organoselenium was employed as the electrocatalyst, which played a crucial role as a π-Lewis acid and selectively activated the alkyne for the successful nucleophilic addition. The synthetic strategy permits a wide range of substrate scope up to 93% yield. Several mechanistic experiments, including the isolation of a selenium-incorporated intermediate adduct, enlighten the electrocatalytic pathway.
Collapse
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Jhilik Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|
8
|
Sun BX, Wang XN, Fan TG, Hou YJ, Shen YT, Li YM. Copper-Catalyzed Cascade Multicomponent Reaction of Azides, Alkynes, and Selenium: Synthesis of Ditriazolyl Diselenides. J Org Chem 2023; 88:4528-4535. [PMID: 36913662 DOI: 10.1021/acs.joc.2c03102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
A copper-catalyzed cascade multicomponent reaction for synthesizing ditriazolyl diselenides from azides, terminal alkynes, and elemental selenium has been developed. The present reaction features utilizing readily available and stable reagents, high atom-economy, and mild reaction conditions. A possible mechanism is proposed.
Collapse
Affiliation(s)
- Bo-Xun Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xu-Nan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yu-Jian Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yun-Tao Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
9
|
Zhang JQ, Shen C, Shuai S, Fang L, Hu D, Wang J, Zhou Y, Ni B, Ren H. Electrochemical Selenium-Catalyzed N,O-Difunctionalization of Ynamides: Access to Polysubstituted Oxazoles. Org Lett 2022; 24:9419-9424. [PMID: 36541615 DOI: 10.1021/acs.orglett.2c03811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A green and efficient approach for the difunctionalization of ynamides by merging the electrochemical and organoselenium-catalyzed processes is described. This strategy features mild reaction conditions, broad functional group tolerance and high atom-economy, and requires no external chemical oxidant. Hence, we provide a sustainable alternative for the synthesis of polysubstituted oxazoles.
Collapse
Affiliation(s)
- Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Chunjiao Shen
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Shihao Shuai
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Ling Fang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Jiali Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Yu Zhou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China
| | - Bukuo Ni
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas 75429-3011, United States
| | - Hongjun Ren
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang 318000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, China
| |
Collapse
|
10
|
Xu-Xu QF, Nishii Y, Miura M. Synthesis of Diarylselenides through Rh-Catalyzed Direct Diarylation of Elemental Selenium with Benzamides. J Org Chem 2022; 87:16887-16894. [DOI: 10.1021/acs.joc.2c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Qing-Feng Xu-Xu
- Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiative (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiative (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Patil DV, Hong YT, Kim HY, Oh K. Visible-Light-Induced Three-Component Selenofunctionalization of Alkenes: An Aerobic Selenol Oxidation Approach. Org Lett 2022; 24:8465-8469. [DOI: 10.1021/acs.orglett.2c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Dilip V. Patil
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Young Taek Hong
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
12
|
Tan Z, Xiang F, Xu K, Zeng C. Electrochemical Organoselenium-Catalyzed Intermolecular Hydroazolylation of Alkenes with Low Catalyst Loadings. Org Lett 2022; 24:5345-5350. [PMID: 35852836 DOI: 10.1021/acs.orglett.2c01983] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The organoselenium-catalyzed amination of alkenes is a promising way to construct functionalized amines. However, the use of chemical oxidants and the unavoidable formation of allylic amine or enamine are the two main limitations of these methodologies. Against this background, we herein report an electro-selenocatalytic regime for the hydroazolylation of alkenes with azoles under external oxidant-free conditions with low catalyst loadings. Moreover, this protocol enables the generation of amines without vinyl substituents.
Collapse
Affiliation(s)
- Zhoumei Tan
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Fang Xiang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Li B, Zhou Y, Sun Y, Xiong F, Gu L, Ma W, Mei R. Electrochemical selenium-π-acid promoted hydration of alkynyl phosphonates. Chem Commun (Camb) 2022; 58:7566-7569. [PMID: 35708585 DOI: 10.1039/d2cc01901a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An unprecedented electrochemical selenium-π-acid promoted hydration of internal alkynes bearing a phosphonate auxiliary was described. Thus, valuable (hetero)aryl and alkyl ketones could be accessed under mild, metal- and external oxidant-free conditions. This protocol features high atom-economy, good chemo- and regio-selectivity, excellent functional group tolerance and easily transformable products. Control experiments demonstrate that phosphonate assistance is essential for this transformation.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Yunhao Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Yanan Sun
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Feng Xiong
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| | - Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, P. R. China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, P. R. China
| |
Collapse
|
14
|
Ding D, Xu L, Wei Y. The Synthesis of α-Keto Acetals from Terminal Alkynes and Alcohols via Synergistic Interaction of Organoselenium Catalysis and Electrochemical Oxidation. J Org Chem 2022; 87:4912-4917. [PMID: 35179035 DOI: 10.1021/acs.joc.1c02681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Herein, an unprecedented electrochemical approach for the synthesis of α-keto acetals has been established from readily available terminal alkynes and alcohols. By merging the electrochemical and organoselenium-catalyzed processes, the desired products are obtained at room temperature in the absence of basic or metallic additives, with carbonyl and acetal motifs incorporated simultaneously across the triple bonds in a single operation.
Collapse
Affiliation(s)
- Ding Ding
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832001, People's Republic of China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832001, People's Republic of China
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi 832001, People's Republic of China
| |
Collapse
|
15
|
Cheng PT, Tseng YH, Chein RJ. Organoselenium-Catalyzed Asymmetric Cyclopropanations of ( E)-Chalcones. Org Lett 2021; 23:8104-8108. [PMID: 34612649 DOI: 10.1021/acs.orglett.1c03243] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a new class of chiral tetrahydroselenophene based on (S)-diphenyl(tetrahydroselenophen-2-yl)methanol, which was prepared from (R)-3-(3-bromopropyl)-2,2-diphenyloxirane and sodium selenide. These chiral tetrahydroselenophene-based compounds were used to catalyze asymmetric cyclopropanation reactions; the selenonium ylide intermediates formed from these selenium-containing catalysts and benzyl bromide efficiently react with (E)-chalcones to give various cyclopropanes (27 examples) with excellent enantioselectivities of ≤99% ee and are the first examples of organoselenium-catalyzed asymmetric cyclopropanations.
Collapse
Affiliation(s)
- Pei-Tung Cheng
- Department of Chemistry and Biochemistry, National Chung Cheng University, Min-Hsiung, Chiayi 62102, Taiwan
| | - Yu-Hsun Tseng
- Department of Chemistry, National Central University, Zhongli, Taoyuan 32001, Taiwan
| | - Rong-Jie Chein
- Institute of Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|