1
|
Saadat M, Mostafaei F, Mahdinloo S, Abdi M, Zahednezhad F, Zakeri-Milani P, Valizadeh H. Drug delivery of pH-Sensitive nanoparticles into the liver cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Pal Singh P, Vithalapuram V, Metre S, Kodipyaka R. Lipoplex-based therapeutics for effective oligonucleotide delivery: a compendious review. J Liposome Res 2019; 30:313-335. [DOI: 10.1080/08982104.2019.1652645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Pirthi Pal Singh
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Veena Vithalapuram
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Sunita Metre
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| | - Ravinder Kodipyaka
- Department of Formulation Research and Development, Custom Pharmaceutical Services, Dr. Reddy’s Laboratories Ltd., Hyderabad, India
| |
Collapse
|
3
|
Ni R, Zhou J, Hossain N, Chau Y. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Adv Drug Deliv Rev 2016; 106:3-26. [PMID: 27473931 DOI: 10.1016/j.addr.2016.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
Targeted delivery of nucleic acids into disease sites of human body has been attempted for decades, but both viral and non-viral vectors are yet to meet our expectations. Safety concerns and low delivery efficiency are the main limitations of viral and non-viral vectors, respectively. The structure of viruses is both ordered and dynamic, and is believed to be the key for effective transfection. Detailed understanding of the physical properties of viruses, their interaction with cellular components, and responses towards cellular environments leading to transfection would inspire the development of safe and effective non-viral vectors. To this goal, this review systematically summarizes distinctive features of viruses that are implied for efficient nucleic acid delivery but not yet fully explored in current non-viral vectors. The assembly and disassembly of viral structures, presentation of viral ligands, and the subcellular targeting of viruses are emphasized. Moreover, we describe the current development of cationic material-based viral mimicry (CVM) and structural viral mimicry (SVM) in these aspects. In light of the discrepancy, we identify future opportunities for rational design of viral mimics for the efficient delivery of DNA and RNA.
Collapse
Affiliation(s)
- Rong Ni
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Junli Zhou
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Naushad Hossain
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Chau
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
4
|
Tamaru M, Akita H, Nakatani T, Kajimoto K, Sato Y, Hatakeyama H, Harashima H. Application of apolipoprotein E-modified liposomal nanoparticles as a carrier for delivering DNA and nucleic acid in the brain. Int J Nanomedicine 2014; 9:4267-76. [PMID: 25228805 PMCID: PMC4162633 DOI: 10.2147/ijn.s65402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An innovative drug delivery technology is urgently needed to satisfy unmet medical needs in treating various brain disorders. As a fundamental carrier for plasmid DNA or nucleic acids, we developed a liposomal nanoparticle (multifunctional envelope-type nano device [MEND]) containing a proton-ionizable amino lipid (YSK-MEND). Here we report on the impact of apolipoprotein E (ApoE) modification on the function of YSK-MEND in terms of targeting brain cells. The cellular uptake and function of YSK-MEND encapsulating short interference RNA or plasmid DNA were significantly improved as a result of ApoE modification in mouse neuron-derived cell lines (Neuro-2a and CAD). Intracerebroventricular administration of ApoE-modified YSK-MEND (ApoE/YSK-MEND) encapsulating plasmid DNA also resulted in higher transgene expression in comparison with YSK-MEND that was not modified with ApoE. Moreover, observation of fluorescence-labeled ApoE/YSK-MEND and expression of mCherry (fluorescence protein) derived from plasmid DNA indicated that this carrier might be useful for delivering and conferring transgene expression in neural stem cells and/or neural progenitor cells. Thus, this system may be a useful tool for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Mina Tamaru
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Taichi Nakatani
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kazuaki Kajimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroto Hatakeyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
5
|
Ali HM, Maksimenko A, Urbinati G, Chapuis H, Raouane M, Desmaële D, Yasuhiro H, Harashima H, Couvreur P, Massaad-Massade L. Effects of silencing the RET/PTC1 oncogene in papillary thyroid carcinoma by siRNA-squalene nanoparticles with and without fusogenic companion GALA-cholesterol. Thyroid 2014; 24:327-38. [PMID: 23885719 DOI: 10.1089/thy.2012.0544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND RET/PTC1 is the most prevalent type of gene rearrangement found in papillary thyroid carcinoma (PTC). Previously, we introduced a new noncationic nanosystem for targeted RET/PTC1 silencing by efficient delivery of small interfering RNA (siRNA) using the "squalenoylation" approach. With the aim of improving these results further, we designed new squalenoyl nanostructures consisting of the fusogenic peptide GALA-cholesterol (GALA-Chol) and squalene (SQ) nanoparticles (NPs) of siRNA RET/PTC1. METHODS The siRNA RET/PTC1-SQ bioconjugate was synthesized. The corresponding NPs were prepared with or without GALA-Chol by nanoprecipitation and then characterized for their size and zeta potential. The effects of NPs on BHP 10-3 SCmice and TPC-1 cell viability (MTT assay), gene and protein silencing (reverse transcription-quantitative polymerase chain reaction [rt-qPCR], Western blot), and cellular uptake (fluorescent microscopy) were studied. In vivo gene silencing efficiency of siRNA RET/PTC1-SQ NPs was assessed by administration in nude mice via either intratumoral (i.t.) or intravenous (i.v.) routes. Tumor growth was followed for 19 days. Tumors were then collected, and RET/PTC1 gene and protein inhibitions were assessed by RT-qPCR and Western blot. RESULTS The combination of siRNA RET/PTC1-SQ bioconjugate and GALA-Chol leads to stable NPs of ∼200 nm diameter. In vitro, the results revealed that combining GALA-Chol with siRNA RET/PTC1-SQ NPs decreased cell viability, enhanced cellular internalization, and induced gene silencing efficiency in both human PTC (BHP 10-3 SCmice and TPC-1) cell lines. On the contrary, in vivo, the siRNA RET/PTC1-SQ GALA-Chol NPs were not found to be efficient either in gene silencing or in tumor growth inhibition, compared to siRNA RET/PTC1-SQ NPs both via i.t. and i.v. routes (p<0.001). CONCLUSIONS Conversely to siRNA RET/PTC1-SQ NPs, the siRNA RET/PTC1-SQ GALA-Chol NPs are efficient in vitro but not in vivo. Finally, NPs of siRNA RET/PTC1-SQ were found to be efficient silencers of the RET/PTC1 fusion oncogene in in vivo applications even at a concentration lower than used in a previously published study.
Collapse
Affiliation(s)
- Hafiz Muhammad Ali
- 1 Laboratory of Vectorology and Anti-Cancer Therapies (UMR 8203 CNRS), Gustave Roussy , Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bakhshandeh B, Soleimani M, Hafizi M, Ghaemi N. A comparative study on nonviral genetic modifications in cord blood and bone marrow mesenchymal stem cells. Cytotechnology 2012; 64:523-40. [PMID: 22328133 PMCID: PMC3432529 DOI: 10.1007/s10616-012-9430-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/12/2012] [Indexed: 01/12/2023] Open
Abstract
The focus of both clinical and basic studies on stem cells is increasing due to their potentials in regenerative medicine and cell-based therapies. Recently stem cells have been genetically modified to enhance an existing character in or to bring a new property to them. However, accomplishment of declared goals requires detailed knowledge about their molecular characteristics which could be achieved by genetic modifications mostly through nonviral transfection strategies. Capable of differentiating into multiple cells, human unrestricted somatic stem cells (hUSSCs) and human mesenchymal stem cells (hMSCs) seem to be suitable candidates for transfection approaches. Involvement of microRNAs (miRNAs) in many biological processes makes their transfection evaluation valuable. Herein we investigated the efficacy and toxicity of four typically used transfection reagents (Arrest-In, Lipofectamine 2000, Oligofectamine and HiPerfect) systematically to deliver fluorescent labeled-miRNA and Green Fluorescent Protein (GFP) expressing plasmid into hUSSCs and hMSCs. The authenticity of stem cells was verified by differentiation experiments along with flow cytometry of surface markers. Our study revealed that stemness properties of these stem cells were not affected by transient transfection. Moreover the ratios of cell viability and transfection efficiency in both analyzed stem cells were reversed. Considering cell viability, the highest fraction of GFP-expressing cells was obtained using Oligofectamine (~50%) while the highest transfection rate of miRNA was achieved by Lipofectamine 2000 (~90%). Moreover dependency of hMSCs to size of transfected nucleic acid and time-dependency of Oligofectamine and their affection on the yield of transfection were observed. Cytotoxicity assessments also showed that hUSSCs are sensitive to HiPerFect. In addition cells treated by Lipofectamine showed morphological changes. Representing the efficient nucleic acid transfection, our research facilitates comprehensive genetic modification of stem cells and demonstrates powerful approaches to understand stem cell molecular regulation mechanisms, which eventually improves nonviral cell-mediated gene therapy.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- Stem Cell Biology Department, Stem Cell Technology Research Center, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Maryam Hafizi
- Stem Cell Biology Department, Stem Cell Technology Research Center, Tehran, Iran
| | - Nasser Ghaemi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Label-free quantitative analysis for studying the interactions between nanoparticles and plasma proteins. Anal Bioanal Chem 2012; 405:635-45. [PMID: 22274284 DOI: 10.1007/s00216-011-5691-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 12/12/2022]
Abstract
A shotgun proteomics approach was used to compare human plasma protein binding capability with cationic liposomes, DNA-cationic lipid complexes (lipoplexes), and lipid-polycation-DNA (LPD) complexes. Nano-high-performance liquid chromatography coupled with a high-resolution LTQ Orbitrap XL mass spectrometer was used to characterize and compare their protein corona. Spectral counting and area under curve methods were used to perform label-free quantification. Substantial qualitative and quantitative differences were found among proteins bound to the three different systems investigated. Protein variety found on lipoplexes and LPD complexes was richer than that found on cationic liposomes. There were also significant differences between the amounts of protein. Such results could help in the design of gene-delivery systems, because some proteins could be more selectively bound rather than others, and their bio-distribution could be driven in vivo for more efficient and effective gene therapy.
Collapse
|
8
|
Capriotti AL, Caracciolo G, Caruso G, Foglia P, Pozzi D, Samperi R, Laganà A. Differential analysis of “protein corona” profile adsorbed onto different nonviral gene delivery systems. Anal Biochem 2011; 419:180-9. [DOI: 10.1016/j.ab.2011.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 01/28/2023]
|
9
|
Khalil IA, Hayashi Y, Mizuno R, Harashima H. Octaarginine- and pH sensitive fusogenic peptide-modified nanoparticles for liver gene delivery. J Control Release 2011; 156:374-80. [DOI: 10.1016/j.jconrel.2011.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 06/27/2011] [Accepted: 08/07/2011] [Indexed: 10/17/2022]
|
10
|
Caracciolo G, Pozzi D, Capriotti AL, Marianecci C, Carafa M, Marchini C, Montani M, Amici A, Amenitsch H, Digman MA, Gratton E, Sanchez SS, Laganà A. Factors Determining the Superior Performance of Lipid/DNA/Protammine Nanoparticles over Lipoplexes. J Med Chem 2011; 54:4160-71. [DOI: 10.1021/jm200237p] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giulio Caracciolo
- Department of Molecular Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Daniela Pozzi
- Department of Molecular Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Carlotta Marianecci
- Department of Drug Chemistry and Technologies, Faculty of Pharmacy, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Maria Carafa
- Department of Drug Chemistry and Technologies, Faculty of Pharmacy, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Cristina Marchini
- Department of Bioscience and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Maura Montani
- Department of Bioscience and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Augusto Amici
- Department of Bioscience and Biotechnology, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy
| | - Heinz Amenitsch
- Institute of Biophysics and Nanosystems Research, Austrian Academy of Sciences, Schmiedelstrasse 6, A-8042 Graz, Austria
| | - Michelle A. Digman
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences 2, Irvine, California 92697-2715, United States
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences 2, Irvine, California 92697-2715, United States
| | - Susana S. Sanchez
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, 3120 Natural Sciences 2, Irvine, California 92697-2715, United States
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares, Fundación CNIC-Carlos III, Madrid, Spain
| | - Aldo Laganà
- Department of Chemistry, “Sapienza” University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Ishitsuka T, Akita H, Harashima H. Functional improvement of an IRQ-PEG-MEND for delivering genes to the lung. J Control Release 2011; 154:77-83. [PMID: 21619903 DOI: 10.1016/j.jconrel.2011.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/07/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
The targeted delivery of genes to endothelial cells is a potential strategy for curing certain types of disorders including cancer, inflammation and obesity. We previously reported that a liposome (IRQ-LP) modified with the IRQ peptide (IRQRRRR) was taken up by cells via a unique pathway, namely caveolar endocytosis, a cellular uptake pathway that is involved in the blood-to-tissue uptake of macromolecules in vascular endothelial cells. In the present study, we initally investigated the effect of IRQ peptide-modification on the biodistribution of poly(ethyleneglycol) (PEG)-coated liposomes (PEG-LP) after i.v. administration. The IRQ peptide-modified PEG-LP (IRQ-PEG-LP), as well as the PEG-LP were found to be mainly accumulated in the liver. Nevertheless, the fold increase in the lung accumulation of IRQ-PEG-LP, compared to the PEG-LP (approximately 20-folds) was substantially higher than other tissues (<5-fold). Thus, IRQ could function as a target ligand for lungs. We then used the IRQ peptide as a model for a ligand for targeting normal tissue endothelial cells, and then applied it to a gene delivery system. We previously developed a multifunctional envelope-type nano device (MEND), in which plasmid DNA is condensed using a polycation to form a core particle that is encapsulated in a lipid envelope. We modified the IRQ-modified PEG to the MEND (IRQ-PEG-MEND) and marker gene expression was evaluated after i.v. administration. However the transgene expression of the IRQ-PEG-MEND in lungs was low. This is most likely due to the inhibitory effect of the PEG spacer on intracellular trafficking (especially endosomal escape) of the IRQ-PEG-MEND. To overcome the dilemma associated with PEGylation, we improved the MEND system from the point of view of PEG length, lipid chain of the PEG derivative, the polycation and cationic lipid. As a result, transgene expression in lungs was enhanced in stepwise manner, and was finally improved by 5 orders of magnitude compared with the original IRQ-PEG-MEND. Overcoming the dilemma of PEGylation is critical issue for in vivo applications of gene delivery targeting endothelial cells.
Collapse
Affiliation(s)
- Taichi Ishitsuka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Sapporo, Hokkaido 060-0812, Japan
| | | | | |
Collapse
|
12
|
Toriyabe N, Hayashi Y, Hyodo M, Harashima H. Synthesis and Evaluation of Stearylated Hyaluronic Acid for the Active Delivery of Liposomes to Liver Endothelial Cells. Biol Pharm Bull 2011; 34:1084-9. [DOI: 10.1248/bpb.34.1084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | - Mamoru Hyodo
- Graduate School of Pharmaceutical Sciences, Hokkaido University
| | | |
Collapse
|