1
|
Takashima M, Taniguchi K, Nagaya M, Yamamura S, Takamura Y, Inatani M, Oki M. Gene profiles and mutations in the development of cataracts in the ICR rat model of hereditary cataracts. Sci Rep 2023; 13:18161. [PMID: 37875594 PMCID: PMC10598066 DOI: 10.1038/s41598-023-45088-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Cataracts are opacifications of the lens that cause loss of visual acuity and ultimately of eyesight. Age-related cataract develops in most elderly people, but the mechanisms of cataract onset are incompletely understood. The Ihara Cataract Rat (ICR) is an animal model of hereditary cataracts showing cortical opacity that commonly develops prematurely. We identified putative mechanisms of cataract onset in the ICR rat model by measuring gene expression changes before and after cortical cataract development and conducting point mutation analysis. Genes differentially expressed between 4-week-old animals without cortical cataracts and 8-10-week-old animals with cortical cataracts were selected from microarray analysis. Three connections were identified by STRING analysis: (i) Epithelial-Mesenchymal Transition (EMT), including Col1a2, and Pik3r1. (ii) Lens homeostasis, including Aqp5, and Cpm. (iii) Lipid metabolism, including Scd1, Srebf1, and Pnpla3. Subsequently, mutation points were selected by comparing ICR rats with 12 different rats that do not develop cataracts. The apolipoprotein Apoc3 was mutated in ICR rats. Analyses of gene expression changes and point and mutations suggested that abnormalities in EMT or lipid metabolism could contribute to cataract development in ICR rats.
Collapse
Affiliation(s)
- Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Kei Taniguchi
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masaya Nagaya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Shunki Yamamura
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan.
- Life Science Innovation Center, University of Fukui, Fukui, Japan.
| |
Collapse
|
2
|
Yang X, Zhang F, Liu X, Meng J, Du S, Shao J, Liu J, Fang M. FOXO4 mediates resistance to oxidative stress in lens epithelial cells by modulating the TRIM25/Nrf2 signaling. Exp Cell Res 2022; 420:113340. [PMID: 36075446 DOI: 10.1016/j.yexcr.2022.113340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022]
Abstract
Oxidative stress damage to the lens is a key factor in most cataracts. Forkhead box O 4 (FOXO4), a member of the forkhead box O family, plays a pivotal role in oxidative stress. FOXO4 is upregulated in lens of age-related cataract patients, but its role in cataract has not been elucidated. Herein, we investigated the role and mechanism of FOXO4 during oxidative stress damage in lens epithelial cells. H2O2 treatment enhanced FOXO4 expression in HLEpiC cells. Short hairpin RNAs mediated FOXO4 silence aggravated H2O2-induced cell apoptosis. In addition, upon H2O2 exposure, silencing of FOXO4 reduced SOD and CAT activities, as well as increased intracellular MDA and ROS levels. FOXO4 silencing also inhibited Nrf2 nuclear translocation, followed by reducing the expressions of Nrf2-governed antioxidant genes HO-1 and NOQ-1. Exogenous overexpression of FOXO4 was also involved in this study and exhibited opposite effects of FOXO4-silencing. Mechanistically, FOXO4 directly bound the promoter of TRIM25 and regulated its transcription, thereby activating the Nrf2 signaling. Taken together, in the condition of oxidative stress, the expression of FOXO4 showed a compensatory upregulation and it exhibited an anti-oxidative effect by modulating the transcription of TRIM25, thus activating the Nrf2 signaling. The FOXO4/TRIM25/Nrf2 axis may be associated with the pathological mechanisms of cataract.
Collapse
Affiliation(s)
- Xin Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuhui Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jia Meng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Shanshan Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jingzhi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jingjing Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Mengyuan Fang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
3
|
Synthesis of a Disulfuram Inclusion Complex with Hydroxypropyl-β-Cyclodextrin and Its Effect on Cataract Development in Rats. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02140-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Li X, Meng F, Li H, Hua X, Wu L, Yuan X. L‑carnitine alleviates oxidative stress‑related damage via MAPK signaling in human lens epithelial cells exposed to H2O2. Int J Mol Med 2019; 44:1515-1522. [PMID: 31364739 DOI: 10.3892/ijmm.2019.4283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/19/2019] [Indexed: 11/06/2022] Open
Abstract
L‑carnitine (LC) is well known for its antioxidative properties. The present study aimed to evaluate the effects of LC on human lens epithelial cells (HLECs) and to analyze its regulatory mechanism in cataractogenesis. HLE B‑3 cells were cultured with hydrogen peroxide (H2O2) and were pretreated with or without LC. The Cell Counting kit‑8 assay was used to determine cell viability. Reactive oxygen species (ROS) assay kit was used to measure the cellular ROS production induced by H2O2 and LC. In addition, reverse transcription‑quantitative PCR and western blot analysis were performed to detect the expression levels of oxidative damage markers and antioxidant enzymes. Notably, ROS overproduction was observed upon exposure to H2O2, whereas LC supplementation markedly decreased ROS levels through activation of the antioxidant enzymes forkhead box O1, peroxiredoxin 4 and catalase. Furthermore, LC suppressed the expression of apoptosis‑associated genes (caspase-3) and inflammation‑associated genes [interleukin (IL)1, IL6, IL8 and cyclooxygenase‑2]. Conversely, LC promoted proliferating cell nuclear antigen, cyclin‑dependent kinase (CDK)2 and CDK4 expression, which may increase proliferation of HLECs that were incubated with H2O2. In addition, epithelial‑mesenchymal transition occurred upon ROS accumulation, whereas the effects of H2O2 on AQP1 and vimentin expression were reversed upon LC supplementation. Notably, this study revealed that LC restored the oxidant/antioxidant balance and protected against cell damage through the mitogen‑activated protein kinase signaling pathway. In conclusion, LC may serve a protective role in curbing oxidative damage and therefore may be considered a potential therapeutic agent for the treatment of cataracts.
Collapse
Affiliation(s)
- Xiaoxia Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, P.R. China
| | - Fanlan Meng
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, P.R. China
| | - Hua Li
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, P.R. China
| | - Xia Hua
- Department of Ophthalmology, Tianjin Orbit Research Institute, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Li'an Wu
- Xi'an No. 4 Hospital, Shaanxi Ophthalmic Medical Center, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaoyong Yuan
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, P.R. China
| |
Collapse
|
5
|
Ghrelin Protects Human Lens Epithelial Cells against Oxidative Stress-Induced Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1910450. [PMID: 29129986 PMCID: PMC5654336 DOI: 10.1155/2017/1910450] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/18/2017] [Accepted: 04/23/2017] [Indexed: 12/13/2022]
Abstract
Oxidative stress has been recognized as an important mediator in the pathogenesis of age-related cataracts; using antioxidant supplements is one plausible strategy to protect the antioxidative defense system against oxidative stress. Ghrelin administration is expected to reduce ROS, preventing the onset of different diseases. The role of ghrelin, if any, in protecting against oxidative stress in HLECs has never been examined. In the present study, we investigated the effects of ghrelin against H2O2-induced oxidative stress and the associated molecular mechanisms in HLECs and rat lenses. The results showed that pretreatment with ghrelin reduced H2O2-induced cellular apoptosis and ROS accumulation, increased the expression levels of SOD and CAT, and decreased the expression level of MDA. The morphological examination showed that the ghrelin-treated lens organ culture maintained transparency. This is the first report to show that ghrelin can protect HLECs from H2O2-induced oxidative stress. Our findings suggest that ghrelin may prevent the progression of cataracts, which has treatment value for ophthalmologists.
Collapse
|
6
|
Tyukova VS, Kedik SA, Panov AV, Zhavoronok ES, Zolotareva MS. Preparation and Molecular Composition of an Inclusion Complex of Dilsulfiram and Hydroxypropyl-β-Cyclodextrin. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Protective Effect of D-Limonene against Oxidative Stress-Induced Cell Damage in Human Lens Epithelial Cells via the p38 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:5962832. [PMID: 26682012 PMCID: PMC4670880 DOI: 10.1155/2016/5962832] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/29/2015] [Accepted: 08/02/2015] [Indexed: 11/21/2022]
Abstract
Oxidative stress, as mediated by ROS, is a significant factor in initiating the development of age-associated cataracts; D-limonene is a common natural terpene with powerful antioxidative properties which occurs naturally in a wide variety of living organisms. It has been shown to have antioxidant effect; we found that D-limonene can effectively prevent the oxidative damage caused by H2O2 and propose that the main mechanism underlying the inhibitory effects of D-limonene is the inhibition of HLECs apoptosis. In the present study, we used confocal-fluorescence microscopy, flow cytometry analysis, Hoechst staining, H2DCFDA staining, transmission electron microscopy, and immunoblot analysis; the results revealed that slightly higher concentrations of D-limonene (125–1800 μM) reduced the H2O2-induced ROS generation and inhibited the H2O2-induced caspase-3 and caspase-9 activation and decreased the Bcl-2/Bax ratio. Furthermore, it inhibited H2O2-induced p38 MAPK phosphorylation. Thus, we conclude that D-limonene could effectively protect HLECs from H2O2-induced oxidative stress and that its antioxidative effect is significant, thereby increasing the cell survival rate.
Collapse
|