1
|
Lu L, Yang Y, Shi G, He X, Xu X, Feng Y, Wang W, Li Z, Yang J, Li B, Sun G. Alterations in mitochondrial structure and function in response to environmental temperature changes in Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106330. [PMID: 38171258 DOI: 10.1016/j.marenvres.2023.106330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Global temperatures have risen as a result of climate change, and the resulting warmer seawater will exert physiological stresses on many aquatic animals, including Apostichopus japonicus. It has been suggested that the sensitivity of aquatic poikilothermal animals to climate change is closely related to mitochondrial function. Therefore, understanding the interaction between elevated temperature and mitochondrial functioning is key to characterizing organisms' responses to heat stress. However, little is known about the mitochondrial response to heat stress in A. japonicus. In this work, we investigated the morphological and functional changes of A. japonicus mitochondria under three representative temperatures, control temperature (18 °C), aestivation temperature (25 °C) and heat stress temperature (32 °C) temperatures using transmission electron microscopy (TEM) observation of mitochondrial morphology combined with proteomics and metabolomics techniques. The results showed that the mitochondrial morphology of A. japonicus was altered, with decreases in the number of mitochondrial cristae at 25 °C and mitochondrial lysis, fracture, and vacuolization at 32 °C. Proteomic and metabolomic analyses revealed 103 differentially expressed proteins and 161 differential metabolites at 25 °C. At 32 °C, the levels of 214 proteins and 172 metabolites were significantly altered. These proteins and metabolites were involved in the tricarboxylic acid (TCA) cycle, substance transport, membrane potential homeostasis, anti-stress processes, mitochondrial autophagy, and apoptosis. Furthermore, a hypothetical network of proteins and metabolites in A. japonicus mitochondria in response to temperature changes was constructed based on proteomic and metabolomic data. These results suggest that the dynamic regulation of mitochondrial energy metabolism, resistance to oxidative stress, autophagy, apoptosis, and mitochondrial morphology in A. japonicus may play important roles in the response to elevated temperatures. In summary, this study describes the response of A. japonicus mitochondria to temperature changes from the perspectives of morphology, proteins, and metabolites, which provided a better understanding the mechanisms of mitochondrial regulation under environment stress in marine echinoderms.
Collapse
Affiliation(s)
- Lixin Lu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yu Yang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Guojun Shi
- Hekou District Science and Technology Bureau, China
| | - Xiaohua He
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Bin Li
- Yantai Haiyu Marine Science and Technology Co. Ltd, Yantai, 264002, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China.
| |
Collapse
|
2
|
Wang Z, He Y, Tan Z. Transcription Analysis of Liver and Muscle Tissues from Landrace Finishing Pigs with Different Feed Conversion Ratios. Genes (Basel) 2022; 13:2067. [PMID: 36360304 PMCID: PMC9690258 DOI: 10.3390/genes13112067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 10/29/2023] Open
Abstract
The efficiency of feed utilization determines the cost and economic benefits of pig production. In the present study, two pairs of full-sibling and two pairs of half-sibling female Landrace finishing pigs were selected, with each pair including individuals with different feed conversion rates, with liver and longissimus muscle tissue samples collected from each group for transcriptome analysis. A total of 561 differentially expressed genes (DEGs), among which 224 were up-regulated and 337 were down-regulated, were detected in the liver transcriptomes in the high-feed efficiency group compared to the low-feed efficiency group. The DEGs related to phosphorus and phosphate metabolism, arginine biosynthesis, chemical carcinogenesis, cytokine-cytokine receptor interaction, the biosynthesis of amino acids, and drug metabolism-cytochrome P450 in liver tissue were also associated with feed efficiency. In total, 215 DEGs were screened in the longissimus muscle tissue and were mainly related to disease and immune regulation, including complement and coagulation cascades, systemic lupus erythematosus, and prion diseases. The combination of gene expression and functional annotation results led to the identification of candidate feed efficiency-related biomarkers, such as ARG1, ARG2, GOT1, GPT2, ACAA2, ACADM, and ANGPTL4, members of cytochrome P450 family, and complement component family genes. Although the novel feed efficiency-related candidate genes need to be further evaluated by a larger sample size and functional studies, the present study identifies novel candidate biomarkers for the identification of functional SNPs underlying porcine feed efficiency.
Collapse
Affiliation(s)
| | | | - Zhen Tan
- School of Animal Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Yamaguchi Y, Kadowaki T, Aibara N, Ohyama K, Okamoto K, Sakai E, Tsukuba T. Coronin1C Is a GDP-Specific Rab44 Effector That Controls Osteoclast Formation by Regulating Cell Motility in Macrophages. Int J Mol Sci 2022; 23:ijms23126619. [PMID: 35743062 PMCID: PMC9224296 DOI: 10.3390/ijms23126619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoclasts are multinucleated bone-resorbing cells that are formed by the fusion of macrophages. Recently, we identified Rab44, a large Rab GTPase, as an upregulated gene during osteoclast differentiation that negatively regulates osteoclast differentiation. However, the molecular mechanisms by which Rab44 negatively regulates osteoclast differentiation remain unknown. Here, we found that the GDP form of Rab44 interacted with the actin-binding protein, Coronin1C, in murine macrophages. Immunoprecipitation experiments revealed that the interaction of Rab44 and Coronin1C occurred in wild-type and a dominant-negative (DN) mutant of Rab44, but not in a constitutively active (CA) mutant of Rab44. Consistent with these findings, the expression of the CA mutant inhibited osteoclast differentiation, whereas that of the DN mutant enhanced this differentiation. Using a phase-contrast microscope, Coronin1C-knockdown osteoclasts apparently impaired multinuclear formation. Moreover, Coronin1C knockdown impaired the migration and chemotaxis of RAW-D macrophages. An in vivo experimental system demonstrated that Coronin1C knockdown suppresses osteoclastogenesis. Therefore, the decreased cell formation and fusion of Coronin1C-depleted osteoclasts might be due to the decreased migration of Coronin1C-knockdown macrophages. These results indicate that Coronin1C is a GDP-specific Rab44 effector that controls osteoclast formation by regulating cell motility in macrophages.
Collapse
Affiliation(s)
- Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan;
| | - Nozomi Aibara
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (N.A.); (K.O.)
| | - Kaname Ohyama
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (N.A.); (K.O.)
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan;
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
- Correspondence: ; Tel.: +81-95-819-7652
| |
Collapse
|
4
|
Fu R, Edman MC, Hamm-Alvarez SF. Rab27a Contributes to Cathepsin S Secretion in Lacrimal Gland Acinar Cells. Int J Mol Sci 2021; 22:1630. [PMID: 33562815 PMCID: PMC7914720 DOI: 10.3390/ijms22041630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Altered lacrimal gland (LG) secretion is a feature of autoimmune dacryoadenitis in Sjögren's syndrome (SS). Cathepsin S (CTSS) is increased in tears of SS patients, which may contribute to disease. Rab3D and Rab27a/b isoforms are effectors of exocytosis in LG, but Rab27a is poorly studied. To investigate whether Rab27a mediates CTSS secretion, we utilized quantitative confocal fluorescence microscopy of LG from SS-model male NOD and control male BALB/c mice, showing that Rab27a-enriched vesicles containing CTSS were increased in NOD mouse LG. Live-cell imaging of cultured lacrimal gland acinar cells (LGAC) transduced with adenovirus encoding wild-type (WT) mCFP-Rab27a revealed carbachol-stimulated fusion and depletion of mCFP-Rab27a-enriched vesicles. LGAC transduced with dominant-negative (DN) mCFP-Rab27a exhibited significantly reduced carbachol-stimulated CTSS secretion by 0.5-fold and β-hexosaminidase by 0.3-fold, relative to stimulated LGAC transduced with WT mCFP-Rab27a. Colocalization of Rab27a and endolysosomal markers (Rab7, Lamp2) with the apical membrane was increased in both stimulated BALB/c and NOD mouse LG, but the extent of colocalization was much greater in NOD mouse LG. Following stimulation, Rab27a colocalization with endolysosomal membranes was decreased. In conclusion, Rab27a participates in CTSS secretion in LGAC though the major regulated pathway, and through a novel endolysosomal pathway that is increased in SS.
Collapse
Affiliation(s)
- Runzhong Fu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| |
Collapse
|
5
|
Al-Saad RZ, Kerr I, Hume AN. Determination of the Rab27-Effector Binding Affinity Using a High-Throughput FRET-Based Assay. Methods Mol Biol 2021; 2293:143-162. [PMID: 34453715 DOI: 10.1007/978-1-0716-1346-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Thus far, two Rab27 isoforms (Rab27a and Rab27b) have been identified that interact with their eleven downstream effectors proteins, preferentially in their GTP-bound state. In recent years, a number of studies has suggested roles for Rab27-effector protein interactions in the development of cancer cell invasion and metastasis, and immune and inflammatory responses. Here we develop an in vitro fluorescence resonance energy transfer (FRET)-based protein-protein interaction assay to report Rab27 protein interactions with their effectors. We particularly focus on determining the interaction of mouse (m) Synaptotagmin-like protein (Slp)1 and mSlp2 effector proteins with human (h)Rab27. Green fluorescent protein (GFP)-N-terminus Rab27 binding domains (m-Slp1 and m-Slp2) recombinant proteins were used as donor fluorophores, whereas mCherry-hRab27a/b recombinant proteins were used as acceptor fluorophores. The conditions of this assay were validated and optimized, and the specificity of the assay was confirmed. Accordingly, this assay can be used to assess and identify key determinants and/or candidate inhibitors of Rab27-effector interactions.
Collapse
Affiliation(s)
- Raghdan Z Al-Saad
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK.
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Babylon, Babylon, Iraq.
| | - Ian Kerr
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Alistair N Hume
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Rab27a Contributes to the Processing of Inflammatory Pain in Mice. Cells 2020; 9:cells9061488. [PMID: 32570938 PMCID: PMC7349490 DOI: 10.3390/cells9061488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/26/2022] Open
Abstract
Tissue injury and inflammation may result in chronic pain, a severe debilitating disease that is associated with great impairment of quality of life. An increasing body of evidence indicates that members of the Rab family of small GTPases contribute to pain processing; however, their specific functions remain poorly understood. Here, we found using immunofluorescence staining and in situ hybridization that the small GTPase Rab27a is highly expressed in sensory neurons and in the superficial dorsal horn of the spinal cord of mice. Rab27a mutant mice, which carry a single-nucleotide missense mutation of Rab27a leading to the expression of a nonfunctional protein, show reduced mechanical hyperalgesia and spontaneous pain behavior in inflammatory pain models, while their responses to acute noxious mechanical and thermal stimuli is not affected. Our study uncovers a previously unrecognized function of Rab27a in the processing of persistent inflammatory pain in mice.
Collapse
|
7
|
Kimura T, Yamaoka M, Terabayashi T, Kaibuchi K, Ishikawa T, Ishizaki T. GDP-Bound Rab27a Dissociates from the Endocytic Machinery in a Phosphorylation-Dependent Manner after Insulin Secretion. Biol Pharm Bull 2020; 42:1532-1537. [PMID: 31474712 DOI: 10.1248/bpb.b19-00242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose-stimulated insulin secretion is controlled by both exocytosis and endocytosis in pancreatic β-cells. Although endocytosis is a fundamental step to maintain cellular responses to the secretagogue, the molecular mechanism of endocytosis remains poorly defined. We have previously shown that in response to high concentrations of glucose, guanosine 5'-diphosphate (GDP)-bound Rab27a is recruited to the plasma membrane where IQ motif-containing guanosine 5'-triphosphatase (GTPase)-activating protein 1 (IQGAP1) is expressed, and that complex formation promotes endocytosis of secretory membranes after insulin secretion. In the present study, the regulatory mechanisms of dissociation of the complex were investigated. Phosphorylation of IQGAP1 on serine (Ser)-1443, a site recognized by protein kinase Cε (PKCε), inhibited the interaction of GDP-bound Rab27a with IQGAP1 in a Cdc42-independent manner. Glucose stimulation caused a translocation of PKCε from the cytosol to the plasma membrane. In addition, glucose-induced endocytosis was inhibited by the knockdown of IQGAP1 with small interfering RNA (siRNA). However, the expression of the non-phosphorylatable or phosphomimetic form of IQGAP1 could not rescue the inhibition, suggesting that a phosphorylation-dephosphorylation cycle of IQGAP1 is required for endocytosis. These results suggest that IQGAP1 phosphorylated by PKCε promotes the dissociation of the IQGAP1-GDP-bound Rab27a complex in pancreatic β-cells, thereby regulating endocytosis of secretory membranes following insulin secretion.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka.,Department of Pharmacology, Oita University Faculty of Medicine
| | - Mami Yamaoka
- Department of Pharmacology, Oita University Faculty of Medicine
| | | | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University.,Institute for Comprehensive Medical Science, Fujita Health University
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | | |
Collapse
|
8
|
Su WF, Gu Y, Wei ZY, Shen YT, Jin ZH, Yuan Y, Gu XS, Chen G. Rab27a/Slp2-a complex is involved in Schwann cell myelination. Neural Regen Res 2016; 11:1830-1838. [PMID: 28123429 PMCID: PMC5204241 DOI: 10.4103/1673-5374.194755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Myelination of Schwann cells in the peripheral nervous system is an intricate process involving myelin protein trafficking. Recently, the role and mechanism of the endosomal/lysosomal system in myelin formation were emphasized. Our previous results demonstrated that a small GTPase Rab27a regulates lysosomal exocytosis and myelin protein trafficking in Schwann cells. In this present study, we established a dorsal root ganglion (DRG) neuron and Schwann cell co-culture model to identify the signals associated with Rab27a during myelination. First, Slp2-a, as the Rab27a effector, was endogenously expressed in Schwann cells. Second, Rab27a expression significantly increased during Schwann cell myelination. Finally, Rab27a and Slp2-a silencing in Schwann cells not only reduced myelin protein expression, but also impaired formation of myelin-like membranes in DRG neuron and Schwann cell co-cultures. Our findings suggest that the Rab27a/Slp2-a complex affects Schwann cell myelination in vitro.
Collapse
Affiliation(s)
- Wen-Feng Su
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhong-Ya Wei
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yun-Tian Shen
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zi-Han Jin
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ying Yuan
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China; Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Song Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Gang Chen
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|