1
|
Mazumder S, Bindu S, Debsharma S, Bandyopadhyay U. Induction of mitochondrial toxicity by non-steroidal anti-inflammatory drugs (NSAIDs): The ultimate trade-off governing the therapeutic merits and demerits of these wonder drugs. Biochem Pharmacol 2024; 228:116283. [PMID: 38750902 DOI: 10.1016/j.bcp.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are most extensively used over-the-counter FDA-approved analgesic medicines for treating inflammation, musculoskeletal pain, arthritis, pyrexia and menstrual cramps. Moreover, aspirin is widely used against cardiovascular complications. Owing to their non-addictive nature, NSAIDs are also commissioned as safer opioid-sparing alternatives in acute trauma and post-surgical treatments. In fact, therapeutic spectrum of NSAIDs is expanding. These "wonder-drugs" are now repurposed against lung diseases, diabetes, neurodegenerative disorders, fungal infections and most notably cancer, due to their efficacy against chemoresistance, radio-resistance and cancer stem cells. However, prolonged NSAID treatment accompany several adverse effects. Mechanistically, apart from cyclooxygenase inhibition, NSAIDs directly target mitochondria to induce cell death. Interestingly, there are also incidences of dose-dependent effects where NSAIDs are found to improve mitochondrial health thereby suggesting plausible mitohormesis. While mitochondria-targeted effects of NSAIDs are discretely studied, a comprehensive account emphasizing the multiple dimensions in which NSAIDs affect mitochondrial structure-function integrity, leading to cell death, is lacking. This review discusses the current understanding of NSAID-mitochondria interactions in the pathophysiological background. This is essential for assessing the risk-benefit trade-offs of NSAIDs for judiciously strategizing NSAID-based approaches to manage pain and inflammation as well as formulating effective anti-cancer strategies. We also discuss recent developments constituting selective mitochondria-targeted NSAIDs including theranostics, mitocans, chimeric small molecules, prodrugs and nanomedicines that rationally optimize safer application of NSAIDs. Thus, we present a comprehensive understanding of therapeutic merits and demerits of NSAIDs with mitochondria at its cross roads. This would help in NSAID-based disease management research and drug development.
Collapse
Affiliation(s)
- Somnath Mazumder
- Department of Zoology, Raja Peary Mohan College, 1 Acharya Dhruba Pal Road, Uttarpara, West Bengal 712258, India
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, West Bengal, India.
| |
Collapse
|
2
|
Azizian S, Khezri S, Shabani M, Atashbar S, Salimi A. Vitamin D ameliorates celecoxib cardiotoxicity in a doxorubicin heart failure rat model via enhancement of the antioxidant defense and minimizing mitochondrial dysfunction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5861-5873. [PMID: 38334825 DOI: 10.1007/s00210-024-02998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Recent evidence suggests the mechanistic role of mitochondria and oxidative stress in the development of celecoxib-induced cardiotoxicity. On the other, it has reported the positive effects of vitamin D on oxidative stress and the maintenance of mitochondrial functions. This current study examined the cardiac effects of celecoxib, doxorubicin, vitamin D, and a combination of them in rats. The effect of 10 days of celecoxib (100 mg/kg/day), doxorubicin (2.5 mg/kg), vitamin D (60,000 U/kg), and their combination was studied on cardiac function according to serum lactate dehydrogenase (LDH), creatine kinase (CK), glutathione (GSH), and malondialdehyde (MDA) levels as well as mitochondrial succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS) production, mitochondrial swelling, and mitochondrial membrane potential (MMP). Results showed that celecoxib and its combination with doxorubicin led to abnormality in paws and limbs, increased pressure in the eyes, blindness and animal death (in about 75% of the animals under study). Moreover, celecoxib and its combination with doxorubicin significantly increased cardiotoxicity biomarkers, oxidative stress markers (GSH and MDA), and mitochondrial toxicity parameters (SDH, ROS formation, MMP collapse, mitochondrial swelling). However, the combination of vitamin D with celecoxib and celecoxib + doxorubicin caused a significant reversal of deformity in paws and limbs, increased pressure in the eye, blindness, and animal death, as well as cardiotoxicity, oxidative stress, and mitochondrial parameters. This study proved for the first time the beneficial effect of vitamin D on celecoxib-induced cardiotoxicity, which is aggravated in the presence of doxorubicin through the maintenance of mitochondrial functions and its antioxidant potential.
Collapse
Affiliation(s)
- Sepideh Azizian
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saleh Khezri
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran
| | - Mohammad Shabani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran
| | - Saman Atashbar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
| |
Collapse
|
3
|
Thi Thanh Nguyen N, Yoon Lee S. Celecoxib and sulindac sulfide elicit anticancer effects on PIK3CA-mutated head and neck cancer cells through endoplasmic reticulum stress, reactive oxygen species, and mitochondrial dysfunction. Biochem Pharmacol 2024; 224:116221. [PMID: 38641308 DOI: 10.1016/j.bcp.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Gain-of-function mutation in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit alpha gene (PIK3CA) is a significant factor in head and neck cancer (HNC). Patients with HNC harboring PIK3CA mutations receive therapeutic benefits from the use of non-steroidal anti-inflammatory drugs (NSAIDs). However, the molecular mechanisms underlying these effects remain unknown. Here, we examined the Detroit562 and FaDu cell lines as HNC models with and without a hyperactive PIK3CA mutation (H1047R), respectively, regarding their possible distinct responses to the NSAIDs celecoxib and sulindac sulfide (SUS). Detroit562 cells exhibited relatively high PI3K/Akt pathway-dependent cyclooxygenase-2 (COX-2) expression, associated with cell proliferation. Celecoxib treatment restricted cell proliferation and upregulated endoplasmic reticulum (ER) stress-related markers, including GRP78, C/EBP-homologous protein, activating transcription factor 4, death receptor 5, and reactive oxygen species (ROS). These effects were much stronger in Detroit562 cells than in FaDu cells and were largely COX-2-independent. SUS treatment yielded similar results. Salubrinal (an ER stress inhibitor) and N-acetyl-L-cysteine (a ROS scavenger) prevented NSAID-induced ROS generation and ER stress, respectively, indicating crosstalk between ER and oxidative stress. In addition, celecoxib and/or SUS elevated cleaved caspase-3 levels, Bcl-2-associated X protein/Bcl-2-interacting mediator of cell death expression, and mitochondrial damage, which was more pronounced in Detroit562 than in FaDu cells. Salubrinal and N-acetyl-L-cysteine attenuated celecoxib-induced mitochondrial dysfunction. Collectively, our results suggest that celecoxib and SUS efficiently suppress activating PIK3CA mutation-harboring HNC progression by inducing ER and oxidative stress and mitochondrial dysfunction, leading to apoptotic cell death, further supporting NSAID treatment as a useful strategy for oncogenic PIK3CA-mutated HNC therapy.
Collapse
Affiliation(s)
- Nga Thi Thanh Nguyen
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, Republic of Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi, Republic of Korea; Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi, Republic of Korea.
| |
Collapse
|
4
|
Wang Y, Ping L, Bai F, Zhang X, Li G. Hmgcs2 is the hub gene in diabetic cardiomyopathy and is negatively regulated by Hmgcs2, promoting high glucose-induced cardiomyocyte injury. Immun Inflamm Dis 2024; 12:e1191. [PMID: 38477658 PMCID: PMC10936232 DOI: 10.1002/iid3.1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) represents a major cause of heart failure and a large medical burden worldwide. This study screened the potentially regulatory targets of DCM and analyzed their roles in high glucose (HG)-induced cardiomyocyte injury. METHODS Through GEO database, we obtained rat DCM expression chips and screened differentially expressed genes. Rat cardiomyocytes (H9C2) were induced with HG. 3-hydroxy-3-methylglutarylcoenzyme A synthase 2 (Hmgcs2) and microRNA (miR)-363-5p expression patterns in cells were measured by real-time quantitative polymerase chain reaction or Western blot assay, with the dual-luciferase assay to analyze their binding relationship. Then, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, lactate dehydrogenase assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, enzyme-linked immunosorbent assay, and various assay kits were applied to evaluate cell viability, cytotoxicity, apoptosis, inflammation responses, and oxidative burden. RESULTS Hmgcs2 was the vital hub gene in DCM. Hmgcs2 was upregulated in HG-induced cardiomyocytes. Hmgcs2 downregulation increased cell viability, decreased TUNEL-positive cell number, reduced HG-induced inflammation and oxidative stress. miR-363-5p is the upstream miRNA of Hmgcs2. miR-363-5p overexpression attenuated HG-induced cell injury. CONCLUSIONS Hmgcs2 had the most critical regulatory role in DCM. We for the first time reported that miR-363-5p inhibited Hmgcs2 expression, thereby alleviating HG-induced cardiomyocyte injury.
Collapse
Affiliation(s)
- Ying Wang
- Department of EndocrinologyThe Second Affiliated Hospital of Shandong First Medical UniversityTai'anChina
| | - Li‐Feng Ping
- Department of General MedicineThe Second Affiliated Hospital of Shandong First Medical UniversityTai'anChina
| | - Fu‐Yan Bai
- Department of EndocrinologyThe Second Affiliated Hospital of Shandong First Medical UniversityTai'anChina
| | - Xin‐Huan Zhang
- Department of EndocrinologyThe Second Affiliated Hospital of Shandong First Medical UniversityTai'anChina
| | - Guang‐Hong Li
- Department of EndocrinologyThe Second Affiliated Hospital of Shandong First Medical UniversityTai'anChina
| |
Collapse
|
5
|
Curcumin-Loaded Chitosan Nanoparticle Preparation and Its Protective Effect on Celecoxib-induced Toxicity in Rat isolated Cardiomyocytes and Mitochondria. Drug Res (Stuttg) 2023; 73:125-136. [PMID: 36423624 DOI: 10.1055/a-1960-3092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Curcumin has a wide range of pharmacological activities, including antioxidant, anti-inflammatory and tissue protective. In here we hypothesized that curcumin-loaded chitosan-coated solid lipid nanoparticles (CuCsSLN) are able to increase its overall bioavailability and hence its antioxidant and mitochondria;/lysosomal protective properties of curcumin. CuCsSLN were prepared using solvent diffusion technique for formation of solid lipid nanoparticles (SLNs) and electrostatic coating of positive-charged chitosan to negative surface of SLNs. CuCsSLN showed the encapsulation efficiency of 91.4±2.7%, the mean particle size of 208±9 nm, the polydispersity index of 0.34±0.07, and the zeta potential of+53.5±3.7 mV. The scanning electron microscope (SEM) images of nanoparticles verified their nanometric size and also spherical shape. Curcumin was released from CuCsSLN in a sustain release pattern up to 24 hours. Then isolated cardiomyocytes and mitochondria were simultaneously treated with (1) control (0.05% ethanol), (2) celecoxib (20 µg/ml) treatment, (3) celecoxib (20 µg/ml)+++CuCsSLN (1 µg/ml) treatment, (4) CuCsSLN (1 µg/ml) treatment, (5) celecoxib (20 µg/ml)+++curcumin (10 µM) treatment and (6) curcumin (10 µM) treatment for 4 h at 37°C. The results showed that celecoxib (20 µg/ml) induced a significant increase in cytotoxicity, reactive oxygen species (ROS) formation, mitochondria membrane potential (ΔΨm) collapse, lipid peroxidation, oxidative stress and mitochondrial swelling while CuCsSLN and curcumin reverted the above toxic effect of celecoxib. Our data indicated that the effect of CuCsSLN in a number of experiments, is significantly better than that of curcumin which shows the role of chitosan nanoparticles in increasing effect of curcumin.
Collapse
|
6
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
7
|
Salimi A, Atashbar S, Shabani M. Gallic acid inhibits celecoxib-induced mitochondrial permeability transition and reduces its toxicity in isolated cardiomyocytes and mitochondria. Hum Exp Toxicol 2021; 40:S530-S539. [PMID: 34715756 DOI: 10.1177/09603271211053299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Mitochondria are the main target organelles through which drugs and chemicals exert their toxic effect on cardiomyocytes. The mitochondria-related mechanisms of celecoxib-induced cardiotoxicity have been extensively studied. Accumulated evidence shows natural molecules targeting mitochondria have proven to be effective in preventing cardiotoxicity. PURPOSE In the present study, we examined the ameliorative effect of gallic acid (GA) against celecoxib-induced cellular and mitochondrial toxicity in isolated cardiomyocytes and mitochondria. RESEARCH DESIGN The isolated cardiomyocytes and mitochondria were divided into various group, namely, control, celecoxib, celecoxib + GA (10, 50, and 100 µM). Several cellular and mitochondrial parameters such as cell viability, lipid peroxidation, succinate dehydrogenase (SDH) activity, reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) collapse, and mitochondrial swelling were assessed in isolated cardiomyocytes and mitochondria. RESULTS Our results showed that administration of celecoxib (16 µg/ml) induced cytotoxicity and mitochondrial dysfunction at 6 h and 1 h, respectively, which is associated with lipid peroxidation intact cardiomyocytes, mitochondrial ROS formation, MMP collapse, and mitochondrial swelling. The cardiomyocytes and mitochondria treated with celecoxib + GA (10, 50, and 100 µM) significantly and dose-dependently restore the altered levels of cellular and mitochondrial parameters. CONCLUSIONS We concluded that GA through antioxidant potential and inhibition of mitochondrial permeability transition (MPT) pore exerted ameliorative role in celecoxib-induced toxicity in isolated cardiomyocytes and mitochondria. The data of the current study suggested that GA supplementation may reduce celecoxib-induced cellular and mitochondrial toxicity during exposure and may provide a potential prophylactic and defensive candidate for coxibs-induced mitochondrial dysfunction, oxidative stress, and cardiotoxicity.
Collapse
Affiliation(s)
- A Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, 48413Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, 48413Ardabil University of Medical Sciences, Ardabil, Iran
| | - S Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, 48413Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, 48413Ardabil University of Medical Sciences, Ardabil, Iran
| | - M Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, 48413Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, 48413Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
8
|
Atashbar S, Sabzalipour T, Salimi A. Stabilization of Mitochondrial Function by Ellagic Acid Prevents Celecoxib-induced Toxicity in Rat Cardiomyocytes and Isolated Mitochondria. Drug Res (Stuttg) 2020; 71:219-227. [DOI: 10.1055/a-1308-1585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThe possible action of polyphenolic compounds in the reduction of reactive oxygen species (ROS) and mitochondrial toxicity may suggest them as putative agents for the treatment of drug-induced mitochondrial dysfunction and cardiotoxicity. This study was designed to explore protective effect of ellagic acid (EA) against celecoxib-induced cellular and mitochondrial toxicity in cardiomyocytes and their isolated mitochondria. In order to do this, isolated cardiomyocytes and mitochondria were pretreated with 3 different concentrations of EA (10, 50 and 100 µM), after which celecoxib (16 µg/ml) was added to promote deleterious effects on cells and mitochondria. Using flow cytometry and biochemical methods, the parameters of cellular and mitochondrial toxicity were investigated. Our results showed that celecoxib (16 µg/ml) caused a significant decrease in cell viability, mitochondrial membrane potential (MMP), glutathione (GSH) in intact cardiomyocytes and succinate dehydrogenase (SDH) activity, MMP collapse, and mitochondrial swelling, and a significant increase in reactive oxygen species (ROS) formation, lipid peroxidation (LP) and oxidative stress in isolated mitochondria. Also, our results revealed that co-administration of EA (50 and 100 µM) with celecoxib significantly attenuated the cellular and mitochondrial toxicity effects. In this study, we showed that simultaneous treatment with of EA ameliorated the cellular and mitochondrial toxicity induced by celecoxib, with cardiomyocytes presenting normal activity compared to the control group, and mitochondria retaining their normal activity.
Collapse
Affiliation(s)
- Saman Atashbar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Towhid Sabzalipour
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
9
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|