1
|
Khan NG, Tungekar B, Adiga D, Chakrabarty S, Rai PS, Kabekkodu SP. Alterations induced by Bisphenol A on cellular organelles and potential relevance on human health. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119505. [PMID: 37286138 DOI: 10.1016/j.bbamcr.2023.119505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is a chemical partially soluble in water and exists in a solid state. Its structural similarity with estrogen makes it an endocrine-disrupting chemical. BPA can disrupt signaling pathways at very low doses and may cause organellar stress. According to in vitro and in vivo studies, BPA interacts with various cell surface receptors to cause organellar stress, producing free radicals, cellular toxicity, structural changes, DNA damage, mitochondrial dysfunction, cytoskeleton remodeling, centriole duplication, and aberrant changes in several cell signaling pathways. The current review summarizes the impact of BPA exposure on the structural and functional aspects of subcellular components of cells such as the nucleus, mitochondria, endoplasmic reticulum, lysosome, ribosome, Golgi apparatus, and microtubules and its consequent impact on human health.
Collapse
Affiliation(s)
- Nadeem G Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Bushra Tungekar
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
2
|
Ozyurt B, Ozkemahli G, Yirun A, Ozyurt AB, Bacanli M, Basaran N, Kocer-Gumusel B, Erkekoglu P. Comparative evaluation of the effects of bisphenol derivatives on oxidative stress parameters in HepG2 cells. Drug Chem Toxicol 2023; 46:314-322. [PMID: 35045766 DOI: 10.1080/01480545.2022.2028823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bisphenol A (BPA) BPA is an endocrine-disrupting chemical that has a wide range of uses. Exposure to BPA can be by oral, inhalation, and parenteral routes. Although its use in several products is limited, there is still concern on its adverse health effects, particularly for susceptible populations like children. Alternative bisphenols, such as bisphenol S (BPS) and bisphenol F (BPF), are now being used instead of BPA, although there is little information on the toxicity of these bisphenols. BPF is used as a plasticizer in the production of several industrial materials as well as in the coating of drinks and food cans. BPS is used in curing fast-drying epoxy glues, as a corrosion inhibitor and as a reactant in polymer reactions. In this study, the possible toxic effects of BPA, BPS, and BPF in HepG2 cells were evaluated comparatively. For this purpose, their effects on cytotoxicity, production of intracellular reactive oxygen species (ROS), oxidant/antioxidant parameters, and DNA damage have been examined. The cytotoxicity potentials of different bisphenols were found to be as BPS > BPF > BPA. All bisphenol derivatives caused increases in intracellular ROS production. We observed that all bisphenol derivatives cause an imbalance in some oxidant/antioxidant parameters. Bisphenols also caused significant DNA damage in order of BPF > BPA > BPS. We can suggest that both of the bisphenol derivatives used as alternatives to BPA also showed similar toxicities and may not be considered as safe alternatives. Mechanistic studies are needed to elucidate this issue.
Collapse
Affiliation(s)
- Busra Ozyurt
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Gizem Ozkemahli
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Anil Yirun
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey.,Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Çukurova University, Adana, Turkey
| | - Aylin Balci Ozyurt
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Merve Bacanli
- Gülhane Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Health Sciences University, Ankara, Turkey
| | - Nursen Basaran
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Lokman Hekim University, Ankara, Turkey
| | - Pinar Erkekoglu
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
Siswanto FM, Tamura A, Sakuma R, Imaoka S. Yeast β-glucan Increases Etoposide Sensitivity in Lung Cancer Cell Line A549 by Suppressing Nuclear Factor Erythroid 2-Related Factor 2 via the Noncanonical Nuclear Factor Kappa B Pathway. Mol Pharmacol 2022; 101:257-273. [PMID: 35193967 DOI: 10.1124/molpharm.121.000475] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022] Open
Abstract
Etoposide is regarded as one of the main standard cytotoxic drugs for lung cancer. However, mutations in Kelch-like ECH-associated protein 1 (Keap1), the main regulator of nuclear factor erythroid 2-related factor 2 (Nrf2), are often detected in lung cancer and lead to chemoresistance. Since the aberrant activation of Nrf2 enhances drug resistance, the suppression of the Nrf2 pathway is a promising therapeutic strategy for lung cancer. We herein used the human lung adenocarcinoma cell line A549 because it harbors a Keap1 loss-of-function mutation. A treatment with β-glucan, a major component of the fungal cell wall, reduced Nrf2 protein levels; downregulated the expression of cytochrome P450 3A5, UDP glucuronosyltransferase 1A1, and multidrug resistance protein 1; and increased etoposide sensitivity in A549 cells. Furthermore, the ephrin type-A receptor 2 (EphA2) receptor was important for the recognition and biologic activity of β-glucan in A549 cells. EphA2 signaling includes nuclear factor kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and p38 mitogen-activated protein kinase (MAPK). However, treatment of cells with stattic (STAT3 inhibitor) or SB203580 (p38 MAPK inhibitor) did not diminish the effects of β-glucan. In contrast, knockdown of v-rel reticuloendotheliosis viral oncogene homolog B (RelB) abolished the effects of β-glucan, suggesting the involvement of the noncanonical NF-κB pathway. The β-glucan effects were also attenuated by the knockdown of WD40 Repeat protein 23 (WDR23). The β-glucan treatment and RelB overexpression induced the expression of Cullin-4A (CUL4A), which increased WDR23 ligase activity and promoted the subsequent depletion of Nrf2. These results revealed a novel property of β-glucan as a resistance-modifying agent in addition to its widely reported immunomodulatory effects for lung cancer therapy via the EphA2-RelB-CUL4A-Nrf2 axis. SIGNIFICANCE STATEMENT: Chemotherapeutic resistance remains a major obstacle in cancer therapy despite extensive efforts to elucidate the underlying molecular mechanisms and overcome multidrug resistance. The present study revealed a novel resistance-modifying property of β-glucan, thereby expanding our knowledge on the beneficial roles of β-glucan and providing an alternative strategy to prevent drug resistance by cancer. The present results provide evidence for the involvement of a novel mode of NF-κB and Nrf2 crosstalk in the drug resistance phenotype.
Collapse
Affiliation(s)
- Ferbian Milas Siswanto
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Akiyoshi Tamura
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Rika Sakuma
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Susumu Imaoka
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
4
|
Serwetnyk MA, Blagg BS. The disruption of protein-protein interactions with co-chaperones and client substrates as a strategy towards Hsp90 inhibition. Acta Pharm Sin B 2021; 11:1446-1468. [PMID: 34221862 PMCID: PMC8245820 DOI: 10.1016/j.apsb.2020.11.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/12/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022] Open
Abstract
The 90-kiloDalton (kD) heat shock protein (Hsp90) is a ubiquitous, ATP-dependent molecular chaperone whose primary function is to ensure the proper folding of several hundred client protein substrates. Because many of these clients are overexpressed or become mutated during cancer progression, Hsp90 inhibition has been pursued as a potential strategy for cancer as one can target multiple oncoproteins and signaling pathways simultaneously. The first discovered Hsp90 inhibitors, geldanamycin and radicicol, function by competitively binding to Hsp90's N-terminal binding site and inhibiting its ATPase activity. However, most of these N-terminal inhibitors exhibited detrimental activities during clinical evaluation due to induction of the pro-survival heat shock response as well as poor selectivity amongst the four isoforms. Consequently, alternative approaches to Hsp90 inhibition have been pursued and include C-terminal inhibition, isoform-selective inhibition, and the disruption of Hsp90 protein-protein interactions. Since the Hsp90 protein folding cycle requires the assembly of Hsp90 into a large heteroprotein complex, along with various co-chaperones and immunophilins, the development of small molecules that prevent assembly of the complex offers an alternative method of Hsp90 inhibition.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- Aha1, activator of Hsp90 ATPase homologue 1
- CTD, C-terminal domain
- Cdc37, cell division cycle 37
- Disruptors
- Grp94, 94-kD glucose-regulated protein
- HIF-1α, hypoxia-inducing factor-1α
- HIP, Hsp70-interaction protein
- HOP, Hsp70‒Hsp90 organizing protein
- HSQC, heteronuclear single quantum coherence
- Her-2, human epidermal growth factor receptor-2
- Hsp90
- Hsp90, 90-kD heat shock protein
- MD, middle domain
- NTD, N-terminal domain
- Natural products
- PPI, protein−protein interaction
- Peptidomimetics
- Protein−protein interactions
- SAHA, suberoylanilide hydroxamic acid
- SAR, structure–activity relationship
- SUMO, small ubiquitin-like modifier
- Small molecules
- TPR2A, tetratricopeptide-containing repeat 2A
- TRAP1, Hsp75tumor necrosis factor receptor associated protein 1
- TROSY, transverse relaxation-optimized spectroscopy
- hERG, human ether-à-go-go-related gene
Collapse
|
5
|
The regulation of Hypoxia-Inducible Factor-1 (HIF-1alpha) expression by Protein Disulfide Isomerase (PDI). PLoS One 2021; 16:e0246531. [PMID: 33539422 PMCID: PMC7861413 DOI: 10.1371/journal.pone.0246531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/20/2021] [Indexed: 01/05/2023] Open
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha), a transcription factor, plays a critical role in adaption to hypoxia, which is a major feature of diseases, including cancer. Protein disulfide isomerase (PDI) is up-regulated in numerous cancers and leads to cancer progression. PDI, a member of the TRX superfamily, regulates the transcriptional activities of several transcription factors. To investigate the mechanisms by which PDI affects the function of HIF-1alpha, the overexpression or knockdown of PDI was performed. The overexpression of PDI decreased HIF-1alpha expression in the human hepatocarcinoma cell line, Hep3B, whereas the knockdown of endogenous PDI increased its expression. NH4Cl inhibited the decrease in HIF-1alpha expression by PDI overexpression, suggesting that HIF-1alpha was degraded by the lysosomal pathway. HIF-1alpha is transferred to lysosomal membranes by heat shock cognate 70 kDa protein (HSC70). The knockdown of HSC70 abolished the decrease, and PDI facilitated the interaction between HIF-1alpha and HSC70. HIF-1alpha directly interacted with PDI. PDI exists not only in the endoplasmic reticulum (ER), but also in the cytosol. Hypoxia increased cytosolic PDI. We also investigated changes in the redox state of HIF-1alpha using PEG-maleimide, which binds to thiols synthesized from disulfide bonds by reduction. An up-shift in the HIF-1alpha band by the overexpression of PDI was detected, suggesting that PDI formed disulfide bond in HIF-1alpha. HIF-1alpha oxidized by PDI was not degraded in HSC70-knockdown cells, indicating that the formation of disulfide bond in HIF-1alpha was important for decreases in HIF-1alpha expression. To the best of our knowledge, this is the first study to show the regulation of the expression and redox state of HIF-1alpha by PDI. We also demonstrated that PDI formed disulfide bonds in HIF-1alpha 1–245 aa and decreased its expression. In conclusion, the present results showed that PDI is a novel factor regulating HIF-1alpha through lysosome-dependent degradation by changes in its redox state.
Collapse
|
6
|
Jin X, Gong L, Peng Y, Li L, Liu G. Enhancer-bound Nrf2 licenses HIF-1α transcription under hypoxia to promote cisplatin resistance in hepatocellular carcinoma cells. Aging (Albany NY) 2020; 13:364-375. [PMID: 33290263 PMCID: PMC7835028 DOI: 10.18632/aging.202137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/05/2020] [Indexed: 12/23/2022]
Abstract
Tumor microenvironment is hypoxic, which can cause resistance to chemotherapy, but the detailed mechanisms remain elusive. Here we find that mild hypoxia (5% O2) further increases cisplatin resistance in the already resistant HepG2/DDP but not the sensitive HepG2 cells. We find that Nrf2 is responsible for cisplatin resistance under hypoxia, as Nrf2 knockdown sensitizes HepG2/DDP cells while Nrf2 hyper-activation (though KEAP1 knockdown) increases resistance of HepG2 cells to cisplatin. Nrf2 binds to an enhancer element in the upstream of HIF-1α gene independently of hypoxia, promoting HIF-1α mRNA synthesis under hypoxic condition. As a result, Nrf2-dependent transcription counteracts HIF-1α degradation under mild hypoxia condition, leading to preferential cisplatin-resistance in HepG2/DDP cells. Our data suggest that Nrf2 regulation of HIF-1α could be an important mechanism for chemotherapy resistance in vivo.
Collapse
Affiliation(s)
- Xin Jin
- Department of Nuclear Medicine, Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Liansheng Gong
- Department of Biliary Surgery, Xiangya Hospital, Central South University. Changsha 410008, Hunan, China
| | - Ying Peng
- Department of International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and Standards, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Le Li
- Hunan Yuantai Biotechnology Co., Ltd, Changsha 410000, Hunan, China
| | - Gang Liu
- Department of Biliary Surgery, Xiangya Hospital, Central South University. Changsha 410008, Hunan, China
| |
Collapse
|
7
|
Zhao C, Zeng C, Ye S, Dai X, He Q, Yang B, Zhu H. Yes-associated protein (YAP) and transcriptional coactivator with a PDZ-binding motif (TAZ): a nexus between hypoxia and cancer. Acta Pharm Sin B 2020; 10:947-960. [PMID: 32642404 PMCID: PMC7332664 DOI: 10.1016/j.apsb.2019.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common feature of solid tumors. As transcription factors, hypoxia-inducible factors (HIFs) are the master regulators of the hypoxic microenvironment; their target genes function in tumorigenesis and tumor development. Intriguingly, both yes-associated protein (YAP) and its paralog transcriptional coactivator with a PDZ-binding motif (TAZ) play fundamental roles in the malignant progression of hypoxic tumors. As downstream effectors of the mammalian Hippo pathway, YAP and/or TAZ (YAP/TAZ) are phosphorylated and sequestered in the cytoplasm by the large tumor suppressor kinase 1/2 (LATS1/2)-MOB kinase activator 1 (MOB1) complex, which restricts the transcriptional activity of YAP/TAZ. However, dephosphorylated YAP/TAZ have the ability to translocate to the nucleus where they induce transcription of target genes, most of which are closely related to cancer. Herein we review the tumor-related signaling crosstalk between YAP/TAZ and hypoxia, describe current agents and therapeutic strategies targeting the hypoxia–YAP/TAZ axis, and highlight questions that might have a potential impact in the future.
Collapse
Affiliation(s)
- Chenxi Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenming Zeng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Song Ye
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiaoyang Dai
- Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Corresponding author. Tel.: +86 571 882028401; fax: +86 571 88208400.
| |
Collapse
|
8
|
Lai EP, Kersten H, Benter T. Ion-Trap Mass Spectrometric Analysis of Bisphenol A Interactions With Titanium Dioxide Nanoparticles and Milk Proteins. Molecules 2020; 25:E708. [PMID: 32041367 PMCID: PMC7037553 DOI: 10.3390/molecules25030708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/27/2020] [Accepted: 02/05/2020] [Indexed: 11/21/2022] Open
Abstract
Quantitative analysis of endocrine-disrupting molecules such as bisphenol A (BPA) in freshwater to determine their widespread occurrence in environmental resources has been challenged by various adsorption and desorption processes. In this work, ion trap mass spectrometry (ITMS) analysis of BPA was aimed at studying its molecular interactions with titanium dioxide (TiO2) nanoparticles and milk whey proteins. Addition of sodium formate prevented TiO2 nanoparticles from sedimentation while enhancing the electrospray ionization (ESI) efficiency to produce an abundance of [BPA + Na]+ ions at m/z 251.0. More importantly, the ESI-ITMS instrument could operate properly during a direct infusion of nanoparticles up to 500 μg/mL without clogging the intake capillary. Milk protein adsorption of BPA could decrease the [BPA + Na]+ peak intensity significantly unless the proteins were partially removed by curdling to produce whey, which allowed BPA desorption during ESI for quantitative analysis by ITMS.
Collapse
Affiliation(s)
- Edward P.C. Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hendrik Kersten
- Institute for Pure and Applied Mass Spectrometry, Physical and Theoretical Chemistry, Bergische Universität Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany; (H.K.); (T.B.)
| | - Thorsten Benter
- Institute for Pure and Applied Mass Spectrometry, Physical and Theoretical Chemistry, Bergische Universität Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany; (H.K.); (T.B.)
| |
Collapse
|
9
|
Ajith TA. Current insights and future perspectives of hypoxia-inducible factor-targeted therapy in cancer. J Basic Clin Physiol Pharmacol 2018; 30:11-18. [PMID: 30260792 DOI: 10.1515/jbcpp-2017-0167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that are expressed in the hypoxic tumor microenvironment. They are involved in the cellular adaptations by improving the metabolism of glucose and enhance the expression of vascular endothelial growth factor, platelet-derived growth factor and angiopoietin, thereby they play a pivotal role in the angiogenesis. Hypoxia can increase the expression of nuclear factor-kappa B which promotes the pro-inflammatory status. Abnormally high angiogenesis, inflammation, antiapoptosis and anaerobic glycolysis can augment the progression and metastasis of tumor. Hence, HIFs remain one of the promising antiangiogenic agents as well as a direct target for interfering with the energetic of cancer cells in order to regulate the tumor growth. Previous studies found agents like topotecan, acriflavine and benzophenone-1B etc. to block the HIF-α mediated angiogenesis. The effect is mediated through interfering any one of the processes in the activation of HIF such as nuclear translocation of HIF-1α; dimerization of HIF-1α with β in the nucleus; HIF-1α/HIF-2α mediated induction of VEGF or translation of HIF-1α mRNA. Despite the experimental studies on the inhibitory molecules of HIFs, none of them are available for the clinical use. This review article discusses the recent update on the HIF-targeted therapy in cancer.
Collapse
Affiliation(s)
- Thekkuttuparambil A Ajith
- Professor Biochemistry, Department of Biochemistry, Amala Institute of Medical Sciences, Amala Nagar, Thrissur-680 555, Kerala, India
| |
Collapse
|