Chen J, Wu X, Nie D, Yu Z. Protective effects of puerarin combined with bone marrow mesenchymal stem cells on nerve injury in rats with ischemic stroke.
Brain Inj 2025;
39:370-380. [PMID:
39607797 DOI:
10.1080/02699052.2024.2433667]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND
Bone marrow mesenchymal stem cells (BM-MSCs) transplantation shows promise for treating ischemic stroke, but the ischemic environment that follows cerebral infarction hinders the survival of transplanted cells. We aimed to study the effects of puerarin (Pue) in combination with BM-MSCs on cerebral ischemic injury.
METHODS
After middle cerebral artery occlusion (MCAO) models were prepared by suture-occluded method, rats were randomly allocated to the sham, MCAO, Pue (50 mg/kg), BM-MSCs (2×106), and BM-MSCs+Pue groups. The neurological function, infarct area, levels of inflammation-related factors, brain tissue damage, apoptosis, BrdU, Beclin1, and LC3 levels were then assessed.
RESULTS
Pue and BM-MSCs reduced the modified neurological severity score, cerebral infarction area, and serum inflammation-related factor levels for MCAO rats. Furthermore, Pue and BM-MSCs interventions ameliorated brain tissue damage, and repressed apoptosis of brain tissues in MCAO rats. Moreover, Pue or BM-MSCs enhanced BrdU expression, restrained LC3II/LC3I ratio and Beclin 1 expression in MCAO rats' brain tissues. Importantly, the combination of Pue and BM-MSCs exhibited more pronounced effects on aforementioned outcomes.
CONCLUSION
The combination of Pue and BM-MSCs facilitated the recovery of neurological function in rats after cerebral ischemic damage, and the mechanisms may correlate with the repression of neuronal apoptosis, inflammation, and autophagy.
Collapse