1
|
Li N, Gu W, Lu C, Sun X, Tong P, Han Y, Wang W, Dai J. Characteristics of Angiotensin I-converting enzyme 2, type II transmembrane serine protease 2 and 4 in tree shrew indicate it as a potential animal model for SARS-CoV-2 infection. Bioengineered 2021; 12:2836-2850. [PMID: 34227905 PMCID: PMC8806782 DOI: 10.1080/21655979.2021.1940072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Angiotensin I-converting enzyme 2 (ACE2), type II transmembrane serine protease 2 and 4 (TMPRSS2 and TMPRSS4) are important receptors for SARS-CoV-2 infection. In this study, the full-length tree shrewACE2 gene was cloned and sequenced, and its biological information was analyzed. The expression levels of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs of the tree shrew were detected. The results showed that the full-length ACE2 gene in tree shrews was 2,786 bp, and its CDS was 2,418 bp, encoding 805 amino acids. Phylogenetic analysis based on the CDS of ACE2 revealed that tree shrews were more similar to rabbits (85.93%) and humans (85.47%) but far from mice (82.81%) and rats (82.58%). In silico analysis according to the binding site of SARS-CoV-2 with the ACE2 receptor of different species predicted that tree shrews had potential SARS-CoV-2 infection possibility, which was similar to that of rabbits, cats and dogs but significantly higher than that of mice and rats. In addition, various tissues or organs of tree shrews expressed ACE2, TMPRSS2 and TMPRSS4. Among them, the kidney most highly expressed ACE2, followed by the lung and liver. The esophagus, lung, liver, intestine and kidney had relatively high expression levels of TMPRSS2 and TMPRSS4. In general, we reported for the first time the expression of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs in tree shrews. Our results revealed that tree shrews could be used as a potential animal model to study the mechanism underlying SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Na Li
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Wenpeng Gu
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Caixia Lu
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Xiaomei Sun
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Pinfen Tong
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Yuanyuan Han
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Wenguang Wang
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Jiejie Dai
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| |
Collapse
|
2
|
Lu T, Peng H, Zhong L, Wu P, He J, Deng Z, Huang Y. The Tree Shrew as a Model for Cancer Research. Front Oncol 2021; 11:653236. [PMID: 33768009 PMCID: PMC7985444 DOI: 10.3389/fonc.2021.653236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Animal disease models are necessary in medical research, and an appropriate animal model is of great importance for studies about the prevention or treatment of cancer. The most important thing in the selection of animal models is to consider the similarity between animals and humans. The tree shrew (Tupaia belangeri) is a squirrel-like mammal which placed in the order Scandentia. Whole-genome sequencing has revealed that tree shrews are extremely similar to primate and humans than to rodents, with many highly conserved genes, which makes the data from studies that use tree shrews as models more convincing and the research outcomes more easily translatable. In tumor research, tree shrews are often used as animal models for hepatic and mammary cancers. As research has progressed, other types of tree shrew tumor models have been developed and exhibit clinical manifestations similar to those of humans. Combining the advantages of both rodents and primates, the tree shrew is expected to be the most powerful animal model for studying tumors.
Collapse
Affiliation(s)
- Tao Lu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Hongmei Peng
- Scientific Research and Education Department, The First People's Hospital of Changde City, Changde, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhiming Deng
- The First People's Hospital of Changde City, Changde, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Abstract
Breast cancer is the most common malignancy in women. Basic and translational breast cancer research relies heavily on experimental animal models. Ideally, such models for breast cancer should have commonality with human breast cancer in terms of tumor etiology, biological behavior, pathology, and response to therapeutics. This review introduces current progress in different breast cancer experimental animal models and analyzes their characteristics, advantages, disadvantages, and potential applications. Finally, we propose future research directions for breast cancer animal models.
Collapse
Affiliation(s)
- Li Zeng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ce-Shi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| |
Collapse
|
4
|
Che P, Wang M, Larson-Casey JL, Hu RH, Cheng Y, El Hamdaoui M, Zhao XK, Grytz R, Brent Carter A, Ding Q. A novel tree shrew model of pulmonary fibrosis. J Transl Med 2021; 101:116-124. [PMID: 32773774 DOI: 10.1038/s41374-020-00476-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/31/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease without effective therapy. Animal models effectively reproducing IPF disease features are needed to study the underlying molecular mechanisms. Tree shrews are genetically, anatomically, and metabolically closer to humans than rodents or dogs; therefore, the tree shrew model presents a unique opportunity for translational research in lung fibrosis. Here we demonstrate that tree shrews have in vivo and in vitro fibrotic responses induced by bleomycin and pro-fibrotic mediators. Bleomycin exposure induced lung fibrosis evidenced by histological and biochemical fibrotic changes. In primary tree shrew lung fibroblasts, transforming growth factor beta-1 (TGF-β1) induced myofibroblast differentiation, increased extracellular matrix (ECM) protein production, and focal adhesion kinase (FAK) activation. Tree shrew lung fibroblasts showed enhanced migration and increased matrix invasion in response to platelet derived growth factor BB (PDGF-BB). Inhibition of FAK significantly attenuated pro-fibrotic responses in lung fibroblasts. The data demonstrate that tree shrews have in vivo and in vitro fibrotic responses similar to that observed in IPF. The data, for the first time, support that the tree shrew model of lung fibrosis is a new and promising experimental animal model for studying the pathophysiology and therapeutics of lung fibrosis.
Collapse
Affiliation(s)
- Pulin Che
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Meimei Wang
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L Larson-Casey
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rui-Han Hu
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yiju Cheng
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Respiratory Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Mustapha El Hamdaoui
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xue-Ke Zhao
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Infectious Diseases, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Rafael Grytz
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - A Brent Carter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Birmingham VAMC, Birmingham, AL, USA.
| | - Qiang Ding
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular and Translational Biomedicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Anesthesiology & Perioperative Medicine, University of Alabama at Birmingham, 901 19th Street South, BMR II, Rm#336, Birmingham, AL, 35294, USA.
| |
Collapse
|
5
|
Xiaotan Jieyu Prescription Alleviates Breast Precancerous Lesions through PI3K/Akt Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4129461. [PMID: 32849898 PMCID: PMC7441443 DOI: 10.1155/2020/4129461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 11/21/2022]
Abstract
Methods The successfully established breast precancerous lesion rat model and normal healthy rats were randomly assigned into the blank (BLA), model (MOD), XTJY-low (LD), XTJY-medium (MD), XTJY-high (HD), and tamoxifen (TAM) groups. Different concentrations of XTJY and saline were supplied by intragastric administration for 4 consecutive weeks to assess the protective effect of XTJY on the progress of the breast precancerous lesion in rats involving the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Results In this study, it determined that 10 mg/each rat DMBA-combined estrogen and progesterone induction for 10 weeks was the optimal condition for the establishment of the breast precancerous lesion rat model. In vivo administration of XTJY or TAM was found to inhibit the development of the breast precancerous lesion, and the occurrence rate of breast invasive carcinomas was decreased by about 50%. Furthermore, XTJY or TAM markedly reduced protein expressions of PI3K and p-Akt and increased protein expressions of PTEN. Conclusion These data indicated that XTJY can significantly alleviate the development of breast precancerous lesions by inhibiting the activation of the PI3K/Akt signaling pathway. XTJY may be a promising drug for the treatment of precancerous lesions in breast cancer.
Collapse
|
6
|
Huang J, Yang G, Li Z, Leung CK, Wang W, Li Y, Liu L, Shen B, He C, He Y, Zeng X, Li J. Involvement of dopamine D3 receptor and dopamine transporter in methamphetamine-induced behavioral sensitization in tree shrews. Brain Behav 2020; 10:e01533. [PMID: 31943832 PMCID: PMC7010569 DOI: 10.1002/brb3.1533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/15/2019] [Accepted: 12/29/2019] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION This study aims to establish a methamphetamine (METH)-induced behavioral sensitization model using tree shrews, as well as to measure the protein expression of the dopamine D3 receptor (D3R) and dopamine transporter (DAT). METHODS Forty tree shrews were equally and randomly divided into four experimental groups: those administered with 1, 2, and 4 mg/kg METH and a control group (treated with an equal amount of normal saline). Each experimental group was repeatedly exposed to METH for nine consecutive days to induce the development of behavioral sensitization, followed by four days of withdrawal (without the METH treatment) to induce the transfer of behavioral sensitization, then given 0.5 mg/kg of METH to undergo the expression of behavioral sensitization. Altered locomotor and stereotypic behaviors were measured daily via open-field experiments during the development and expression stages, and weight changes were also recorded. Then, the Western blot method was used to detect the expression levels of D3R and DAT in three brain regions: the nucleus accumbens, prefrontal cortex, and dorsal striatum 24 hr after the last behavioral test. RESULTS METH administration augmented motor-stimulant responses and stereotypic behaviors in all experimental groups, and stereotypic behaviors intensified more in the groups treated with 2 and 4 mg/kg METH. Motion distance, speed, and trajectory were significantly elevated in all experimental, however, METH at 4 mg/kg induced more stereotypic behaviors, decreasing these locomotor activities as compared with the 2 mg/kg METH group. 2 and 4 mg/kg METH significantly upregulated and downregulated D3R and DAT expression levels, respectively, in three brain regions, and these changes are more pronounced in 2 mg/kg METH. CONCLUSIONS These results indicated that this animal model may be used to study the neurobiological mechanisms that underly the development and expression of behavioral sensitization to METH. Deregulated D3R and DAT expression may be involved in the METH-induced behavioral sensitization.
Collapse
Affiliation(s)
- Jian Huang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Genmeng Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Zhen Li
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Chi-Kwan Leung
- School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China.,CUHK-SDU Joint Laboratory of Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tree Shrew, the Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yuanyuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Liu Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Baoyu Shen
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Cuihua He
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Yongwang He
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Juan Li
- School of Basic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|