1
|
Grossi G, Scarano N, Musumeci F, Tonelli M, Kanov E, Carbone A, Fossa P, Gainetdinov RR, Cichero E, Schenone S. Discovery of a Novel Chemo-Type for TAAR1 Agonism via Molecular Modeling. Molecules 2024; 29:1739. [PMID: 38675561 PMCID: PMC11052455 DOI: 10.3390/molecules29081739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The search for novel effective TAAR1 ligands continues to draw great attention due to the wide range of pharmacological applications related to TAAR1 targeting. Herein, molecular docking studies of known TAAR1 ligands, characterized by an oxazoline core, have been performed in order to identify novel promising chemo-types for the discovery of more active TAAR1 agonists. In particular, the oxazoline-based compound S18616 has been taken as a reference compound for the computational study, leading to the development of quite flat and conformationally locked ligands. The choice of a "Y-shape" conformation was suggested for the design of TAAR1 ligands, interacting with the protein cavity delimited by ASP103 and aromatic residues such as PHE186, PHE195, PHE268, and PHE267. The obtained results allowed us to preliminary in silico screen an in-house series of pyrimidinone-benzimidazoles (1a-10a) as a novel scaffold to target TAAR1. Combined ligand-based (LBCM) and structure based (SBCM) computational methods suggested the biological evaluation of compounds 1a-10a, leading to the identification of derivatives 1a-3a (hTAAR1 EC50 = 526.3-657.4 nM) as promising novel TAAR1 agonists.
Collapse
Affiliation(s)
- Giancarlo Grossi
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Francesca Musumeci
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Michele Tonelli
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Evgeny Kanov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna Carbone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Paola Fossa
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia (R.R.G.)
- St. Petersburg University Hospital, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| | - Silvia Schenone
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.G.); (N.S.); (F.M.); (M.T.); (A.C.); (P.F.); (S.S.)
| |
Collapse
|
2
|
Synthesis and neuroprotective activity of a (–)-cytisine-isoflavone conjugate. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
3
|
Li XW, Lu YY, Zhang SY, Sai NN, Fan YY, Cheng Y, Liu QS. Mechanism of Neural Regeneration Induced by Natural Product LY01 in the 5×FAD Mouse Model of Alzheimer's Disease. Front Pharmacol 2022; 13:926123. [PMID: 35814256 PMCID: PMC9258960 DOI: 10.3389/fphar.2022.926123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 12/28/2022] Open
Abstract
Background: A sharp decline in neural regeneration in patients with Alzheimer's disease (AD) exacerbates the decline of cognition and memory. It is of great significance to screen for innovative drugs that promote endogenous neural regeneration. Cytisine N-methylene-(5,7,4'-trihydroxy)-isoflavone (LY01) is a new compound isolated from the Chinese herbal medicine Sophora alopecuroides with both isoflavone and alkaloid characteristic structures. Its pharmacological effects are worth studying. Objective: This study was designed to determine whether LY01 delays the cognitive and memory decline in the early stage of AD and whether this effect of LY01 is related to promoting neural regeneration. Methods: Eight-week-old 5×Familial Alzheimer's Disease (5×FAD) mice were used as disease models of early AD. Three doses of LY01 administered in two courses (2 and 5 weeks) of treatment were tested. Cognition, memory, and anxiety-like behaviors in mice were evaluated by the Morris water maze, fear conditioning, and open field experiments. Regeneration of neurons in the mouse hippocampus was observed using immunofluorescence staining. The effect of LY01 on cell regeneration was also demonstrated using a series of tests on primary cultured neurons, astrocytes, and neural stem cells (NSCs). In addition, flow cytometry and transcriptome sequencing were carried out to preliminarily explored the mechanisms. Results: We found that LY01 reduced the decline of cognition and memory in the early stage of 5×FAD mice. This effect was related to the proliferation of astrocytes, the proliferation and migration of NSCs, and increases in the number of new cells and neural precursor cells in the dentate gyrus area of 5×FAD mice. This phenomenon could be observed both in 2-week-old female and 5-week-old male LY01-treated 5×FAD mice. The neuronal regeneration induced by LY01 was related to the regulation of the extracellular matrix and associated receptors, and effects on the S phase of the cell cycle. Conclusion: LY01 increases the proliferation of NSCs and astrocytes and the number of neural precursor cells in the hippocampus, resulting in neural regeneration in 5×FAD mice by acting on the extracellular matrix and associated receptors and regulating the S phase of the cell cycle. This provides a new idea for the early intervention and treatment of AD.
Collapse
Affiliation(s)
- Xiao-Wan Li
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yang-Yang Lu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Shu-Yao Zhang
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| | - Ning-Ning Sai
- University Hospital, Tianjin Normal University, Tianjin, China
| | - Yu-Yan Fan
- Traditional Chinese Medicine Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
- Institute of National Security, Minzu University of China, Beijing, China
| | - Qing-Shan Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, Minzu University of China, Beijing, China
| |
Collapse
|
4
|
Synthesis and evaluation of novel HER-2 inhibitors to exert anti-breast cancer ability through epithelial-mesenchymal transition (EMT) pathway. Eur J Med Chem 2022; 237:114325. [DOI: 10.1016/j.ejmech.2022.114325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
|
5
|
Abd-Alla HI, Souguir D, Radwan MO. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch Pharm Res 2021; 44:903-986. [PMID: 34907492 PMCID: PMC8671057 DOI: 10.1007/s12272-021-01354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Sophora is deemed as one of the most remarkable genera of Fabaceae, and the third largest family of flowering plants. The genus Sophora comprises approximately 52 species, 19 varieties, and 7 forms that are widely distributed in Asia and mildly in Africa. Sophora species are recognized to be substantial sources of broad spectrum biopertinent secondary metabolites namely flavonoids, isoflavonoids, chalcones, chromones, pterocarpans, coumarins, benzofuran derivatives, sterols, saponins (mainly triterpene glycosides), oligostilbenes, and mainly alkaloids. Meanwhile, extracts and isolated compounds from Sophora have been identified to possess several health-promising effects including anti-inflammatory, anti-arthritic, antiplatelets, antipyretic, anticancer, antiviral, antimicrobial, antioxidant, anti-osteoporosis, anti-ulcerative colitis, antidiabetic, anti-obesity, antidiarrheal, and insecticidal activities. Herein, the present review aims to provide comprehensive details about the phytochemicals and biological effects of Sophora species. The review spotlighted on the promising phytonutrients extracted from Sophora and their plethora of bioactivities. The review also clarifies the remaining gaps and thus qualifies and supplies a platform for further investigations of these compounds.
Collapse
Affiliation(s)
- Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
| | - Dalila Souguir
- Institut National de Recherches en Génie Rural, Eaux et Forêts (INRGREF), Université de Carthage, 10 Rue Hédi Karray, Manzeh IV, 2080, Ariana, Tunisia
| | - Mohamed O Radwan
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
6
|
Wang Y, Zhao Y, Wei C, Tian N, Yan H. 4D-QSAR Molecular Modeling and Analysis of Flavonoid Derivatives as Acetylcholinesterase Inhibitors. Biol Pharm Bull 2021; 44:999-1006. [PMID: 34193695 DOI: 10.1248/bpb.b21-00265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Flavonoids are potential strikingly natural compounds with antioxidant activity and acetylcholinesterase (AChE) inhibitory activity for treating Alzheimer's disease (AD). In present study, in line with our interests in flavonoid derivatives as AChE inhibitors, a four-dimensional quantitative structure-activity relationship (4D-QSAR) molecular model was proposed. The data required to perform 4D-QSAR analysis includes 52 compounds reported in the literature, usually analogs, and their measured biological activities in a common assay. The model was generated by a complete set of 4D-QSAR program which was written by our group. The best model was found after trying multiple experiments. It had a good predictive ability with the cross-validation correlation coefficient Q2 = 0.77, the internal validation correlation coefficient R2 = 0.954, and the external validation correlation coefficient R2pred = 0.715. The molecular docking analysis was also carried out to understand exceedingly the interactions between flavonoids and the AChE targets, which was in good agreement with the 4D-QSAR model. Based on the information provided by the 4D-QSAR model and molecular docking analysis, the idea for optimizing the structures of flavonoids as AChE inhibitors was put forward which maybe provide theoretical guidance for the research and development of new AChE inhibitors.
Collapse
Affiliation(s)
- Yanyu Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology
| | | | - Chaochun Wei
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology
| | - Nana Tian
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology.,Beijing Tide Pharmaceutical Co., Ltd
| | - Hong Yan
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology
| |
Collapse
|
7
|
Deininger S, Törzsök P, Oswald D, Lusuardi L. Current Systemic Treatment Options in Metastatic Urothelial Carcinoma after Progression on Checkpoint Inhibition Therapy-A Systemic Review Combined with Single-Group Meta-Analysis of Three Studies Testing Enfortumab Vedotin. Cancers (Basel) 2021; 13:3206. [PMID: 34206980 PMCID: PMC8268971 DOI: 10.3390/cancers13133206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In the first and second-line therapy of metastatic urothelial carcinoma (mUC), checkpoint inhibitors (CPI) such as Pembrolizumab and Atezolizumab have been widely implemented. Little is currently known about what therapeutic options are effective after therapy with CPI. This article presents a systemic review of current treatment options in this setting. METHODS From August 2020 to 15 April 2021, a literature search was performed through the PubMed/Medline. Subsequently, a single-group meta-analysis of three studies testing Enfortumab vedotin (EV) was conducted. RESULTS Five therapy regimens tested in the post-CPI setting with adequate data were identified: Chemotherapy (CT), Ramucirumab plus Docetaxel, Erdafitinib (Erd), EV, and Sacituzumab govitecan (SG). In n = 74 + 125 + 288 patients, the single-group meta-analysis showed an objective response rate of 42.1% for EV compared to 17.9% for CT in a similar setting. EV was also ahead in progression free survival (5.9 months with EV vs. 3.7 months with CT) and overall survival (12.8 months with EV vs. 9.0 months with CT). CONCLUSION Most data are currently available for EV. Further research is needed on the question of which patients' subcollectives particularly benefit from which therapeutic approach.
Collapse
Affiliation(s)
- Susanne Deininger
- Department of Urology and Andrology, Salzburg University Hospital, Paracelsus Medical University, 5020 Salzburg, Austria; (P.T.); (D.O.); (L.L.)
| | | | | | | |
Collapse
|
8
|
Cytisine and cytisine derivatives. More than smoking cessation aids. Pharmacol Res 2021; 170:105700. [PMID: 34087351 DOI: 10.1016/j.phrs.2021.105700] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
Cytisine, a natural bioactive compound that is mainly isolated from plants of the Leguminosae family (especially the seeds of Laburnum anagyroides), has been marketed in central and eastern Europe as an aid in the clinical management of smoking cessation for more than 50 years. Its main targets are neuronal nicotinic acetylcholine receptors (nAChRs), and pre-clinical studies have shown that its interactions with various nAChR subtypes located in different areas of the central and peripheral nervous systems are neuroprotective, have a wide range of biological effects on nicotine and alcohol addiction, regulate mood, food intake and motor activity, and influence the autonomic and cardiovascular systems. Its relatively rigid conformation makes it an attractive template for research of new derivatives. Recent studies of structurally modified cytisine have led to the development of new compounds and for some of them the biological activities are mediated by still unidentified targets other than nAChRs, whose mechanisms of action are still being investigated. The aim of this review is to describe and discuss: 1) the most recent pre-clinical results obtained with cytisine in the fields of neurological and non-neurological diseases; 2) the effects and possible mechanisms of action of the most recent cytisine derivatives; and 3) the main areas warranting further research.
Collapse
|