1
|
Ide T. γ-Linolenic Acid-Rich Oil- and Fish Oil-Induced Alterations of Hepatic Lipogenesis, Fatty Acid Oxidation, and Adipose Tissue mRNA Expression in Obese KK-A y Mice. J Oleo Sci 2023; 72:313-327. [PMID: 36878585 DOI: 10.5650/jos.ess22341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The physiological activity of γ-linolenic acid (GLA)-rich evening primrose oil and eicosapentaenoic and doxosahexaenoic acids-rich fish oil, which affect hepatic fatty acid oxidation and synthesis, and adipose tissue mRNA expression were compared in diabetic obese KK-A y mice. The mice were fed diets containing 100 g/kg of either palm oil (saturated fat), GLA oil, or fish oil for 21 days. These oils, compared with palm oil, greatly increased the activity and mRNA levels of hepatic fatty acid oxidation enzymes. These oils also increased the carnitine concentrations and mRNA levels of carnitine transporter (solute carrier family 22, member 5) in the liver. In general, these effects were comparable between GLA and fish oils. In contrast, GLA and fish oils, compared with palm oil, reduced the activity and mRNA levels of the proteins related to hepatic lipogenesis, except for those of malic enzyme. The reducing effect was stronger for fish oil than for GLA oil. These changes were accompanied by reductions in the triacylglycerol levels in the serum and liver. The reduction in the liver was stronger for fish oil than for GLA oil. These oils also reduced epididymal adipose tissue weight accompanied by a reduction in the mRNA levels of several proteins that regulate adipocyte functions; these effects were stronger for fish oil than for GLA oil. These oils were also effective in reducing serum glucose levels. Therefore, both fish oil and GLA-rich oil were effective at ameliorating metabolic disorders related to obesity and diabetes mellitus.
Collapse
Affiliation(s)
- Takashi Ide
- Institute of International Nutrition and Health, Jumonji University
| |
Collapse
|
2
|
The addition of different oils in the diet regulates the expression of adipocytokine signaling genes in sheep longissimus dorsi muscle. Trop Anim Health Prod 2022; 54:385. [DOI: 10.1007/s11250-022-03395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
|
3
|
Liang Y, Zhang Z, Tu J, Wang Z, Gao X, Deng K, El-Samahy MA, You P, Fan Y, Wang F. γ-Linolenic Acid Prevents Lipid Metabolism Disorder in Palmitic Acid-Treated Alpha Mouse Liver-12 Cells by Balancing Autophagy and Apoptosis via the LKB1-AMPK-mTOR Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8257-8267. [PMID: 34281337 DOI: 10.1021/acs.jafc.1c02596] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Excessive fat deposition is the main character in nonalcoholic fatty liver disease (NAFLD), while γ-linolenic acid (GLA) is a polyunsaturated fatty acid that can reduce lipid deposition. This study investigated the effect and regulatory mechanism of GLA (100 μM) on lipid metabolism in alpha mouse liver 12 (AML-12) cells treated by 400 μM palmitic acid (PA). GLA reduced lipid content and increased fatty acid β oxidation, as indicated by decreasing triglyceride and cholesterol contents and increasing mRNA and protein expressions of CPT1α and PPARα. GLA relieved oxidative stress caused by PA, upregulated mRNA levels of superoxide dismutase and glutathione peroxidase, and decreased reactive oxygen species content. GLA reduced apoptosis, as indicated by decreases in the BAX/BCL2 expression level and apoptosis percentage. GLA activated autophagy, autophagosome-lysosome fusion, and LKB1-AMPK-mTOR signaling and upregulated mRNA and protein expressions of Beclin-1, autophagy-related 5, and liver kinase B1 (LKB1). These effects of GLA on lipid metabolism disorders of PA-treated hepatocytes were reversed by autophagy inhibitor 3MA and AMPK inhibitor compound C, confirming our conclusions. Overall, GLA can protect AML-12 cells from lipid metabolism disorder caused by PA via balancing autophagy and apoptosis mediated by the LKB1-AMPK-mTOR pathway. Consequently, GLA, as a dietary supplement, can help to prevent and treat NAFLD by regulating lipid metabolism and autophagy.
Collapse
Affiliation(s)
- Yaxu Liang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Zhen Zhang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Jiayu Tu
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Zhibo Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Xiaoxiao Gao
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Kaiping Deng
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - M A El-Samahy
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Peihua You
- Portal Agri-Industries Co., Ltd., Xingdian Street, Pikou District, Nanjing 210095, PR China
| | - Yixuan Fan
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Feng Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|