1
|
Harun-Or-Rashid M, Aktar MN, Hossain MS, Sarkar N, Islam MR, Arafat ME, Bhowmik S, Yusa SI. Recent Advances in Micro- and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials. Polymers (Basel) 2023; 15:4563. [PMID: 38231996 PMCID: PMC10708661 DOI: 10.3390/polym15234563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Polymeric drug delivery technology, which allows for medicinal ingredients to enter a cell more easily, has advanced considerably in recent decades. Innovative medication delivery strategies use biodegradable and bio-reducible polymers, and progress in the field has been accelerated by future possible research applications. Natural polymers utilized in polymeric drug delivery systems include arginine, chitosan, dextrin, polysaccharides, poly(glycolic acid), poly(lactic acid), and hyaluronic acid. Additionally, poly(2-hydroxyethyl methacrylate), poly(N-isopropyl acrylamide), poly(ethylenimine), dendritic polymers, biodegradable polymers, and bioabsorbable polymers as well as biomimetic and bio-related polymeric systems and drug-free macromolecular therapies have been employed in polymeric drug delivery. Different synthetic and natural biomaterials are in the clinical phase to mitigate different diseases. Drug delivery methods using natural and synthetic polymers are becoming increasingly common in the pharmaceutical industry, with biocompatible and bio-related copolymers and dendrimers having helped cure cancer as drug delivery systems. This review discusses all the above components and how, by combining synthetic and biological approaches, micro- and nano-drug delivery systems can result in revolutionary polymeric drug and gene delivery devices.
Collapse
Affiliation(s)
- Md. Harun-Or-Rashid
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Most. Nazmin Aktar
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Md. Sabbir Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Easin Arafat
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Shukanta Bhowmik
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| |
Collapse
|
2
|
Wang L, Wang B, Hu C, Wang C, Gao C, Jiang H, Yan Y. Influences of chronic copper exposure on intestinal histology, antioxidative and immune status, and transcriptomic response in freshwater grouper (Acrossocheilus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2023; 139:108861. [PMID: 37257568 DOI: 10.1016/j.fsi.2023.108861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Copper (Cu) contamination is commonly found in both natural water environments and fish farms, and it can cause severe damage to different fish organs, but Cu-induced intestinal damage has been rarely studied. This study subjected three groups of freshwater grouper (Acrossocheilus fasciatus) (initial weight: 1.56 ± 0.10 g) to 0 mg/L, 0.01 mg/L, and 0.04 mg/L Cu2+ for 30 days, named Con, Cu0.01, and Cu0.04 groups, respectively. The histological observation indicated that the Cu0.04 group caused a significant decrease in villus length, lamina propria width, and muscular thickness compared to the Con group (P < 0.05). Additionally, the Cu0.04 group significantly increased intestinal superoxide dismutase (SOD), glutathione peroxidase (GPx), lysozyme (LZM) activities, as well as malondialdehyde (MDA) content than the Con group (P < 0.05). Meanwhile, the Cu0.01 and Cu0.04 groups showed significantly increased immunoglobulin M (IgM), complement 3 (C3), and glutathione (GSH) contents than the Con group (P < 0.05). Transcriptomic analysis revealed a total of 101 differentially expressed genes (DEGs), including 47 up-regulated and 54 down-regulated DEGs, were identified between the Cu0.04 and Con groups. Notably, the DEGs were mainly related to intestinal structure construction, immune functions, apoptosis, and resistance to DNA damage and pathogen infection. The findings suggest that chronic Cu exposure caused intestinal histological alterations, activated the antioxidative and immune systems, and induced systematic adaptation to cope with the physical barrier injury, DNA damage, and potential pathogen growth.
Collapse
Affiliation(s)
- Lei Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| | - Bin Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Cong Hu
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chenyang Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Chang Gao
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - He Jiang
- Fisheries Research Institution, Anhui Academy of Agricultural Sciences, Hefei, China.
| | - Yunzhi Yan
- School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China; Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu, 241002, China; Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, 241002, China.
| |
Collapse
|
3
|
Wang C, Chu C, Ji X, Luo G, Xu C, He H, Yao J, Wu J, Hu J, Jin Y. Biology of Peptide Transporter 2 in Mammals: New Insights into Its Function, Structure and Regulation. Cells 2022; 11:cells11182874. [PMID: 36139448 PMCID: PMC9497230 DOI: 10.3390/cells11182874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Peptide transporter 2 (PepT2) in mammals plays essential roles in the reabsorption and conservation of peptide-bound amino acids in the kidney and in maintaining neuropeptide homeostasis in the brain. It is also of significant medical and pharmacological significance in the absorption and disposing of peptide-like drugs, including angiotensin-converting enzyme inhibitors, β-lactam antibiotics and antiviral prodrugs. Understanding the structure, function and regulation of PepT2 is of emerging interest in nutrition, medical and pharmacological research. In this review, we provide a comprehensive overview of the structure, substrate preferences and localization of PepT2 in mammals. As PepT2 is expressed in various organs, its function in the liver, kidney, brain, heart, lung and mammary gland has also been addressed. Finally, the regulatory factors that affect the expression and function of PepT2, such as transcriptional activation and posttranslational modification, are also discussed.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
| | - Chu Chu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiang Ji
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guoliang Luo
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Chunling Xu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Houhong He
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jianbiao Yao
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jian Wu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
- Correspondence: (J.H.); (Y.J.)
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Correspondence: (J.H.); (Y.J.)
| |
Collapse
|