1
|
Tiwari B, Pandey RP, Hussain N. Recent advances in the synthesis of SGLT2 Inhibitors and natural products from carbohydrates. Carbohydr Res 2025; 552:109477. [PMID: 40194327 DOI: 10.1016/j.carres.2025.109477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
Gliflozins are an important class of drugs used in the treatment of type 2 diabetes, a serious and prevalent condition in modern times. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors represent a recent advancement in diabetes treatment, effectively lowering blood sugar levels in patients with type 2 diabetes. Many monosaccharides and their derivatives, such as glycals, play a key role as building blocks in the synthesis of glycosides, particularly C-glycosides, which possess unique structural stability and biological significance. These compounds are crucial in the total synthesis of natural drugs, branched sugars, and other biologically active molecules. This review highlights the recent advancement in the synthesis of SGLT-2 inhibitors and natural products synthesized from carbohydrates made between 2010 and 2024.
Collapse
Affiliation(s)
- Bindu Tiwari
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Ram Pratap Pandey
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Nazar Hussain
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Parida SP, Das T, Ahemad MA, Pati T, Mohapatra S, Nayak S. Recent advances on synthesis of C-glycosides. Carbohydr Res 2023; 530:108856. [PMID: 37315353 DOI: 10.1016/j.carres.2023.108856] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
In recent years, C-glycosides have emerged as significant building blocks for many naturally occurring alkaloids and pharmaceutically active drug molecules. Therefore, significant efforts have been devoted to the construction of structurally important C-glycosidic linkages in carbohydrate compounds. Herein, we have summarized the recent developments of diverse synthesis of C-glycoside core between the time period from 2019 to 2022 focusing on different catalytic strategies, such as (i) transition-metal, and (ii) metal-free catalytic approaches. Further, the transition metal catalyzed C-glycosylations have been categorized into four sub classes: (a) metal based C-H activation, (b) cross-coupling reaction, (c) glycosyl radical intermediate-based process, and (d) Others.
Collapse
Affiliation(s)
| | - Tapaswini Das
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, India
| | | | - Tapaswini Pati
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, India
| | | | - Sabita Nayak
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, India.
| |
Collapse
|
3
|
Hussain N, Rasool F, Khan S, Saleem M, Maheshwari M. Advances in the Synthesis of Natural Products and Medicinally Relevant Molecules from Glycals. ChemistrySelect 2022. [DOI: 10.1002/slct.202201873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nazar Hussain
- Department of Medicinal Chemistry Banaras Hindu University India
| | - Faheem Rasool
- Department of Chemistry Govt. College for Women, Parade Ground Jammu 180001 India
| | - Shahnawaz Khan
- Department of Chemistry Central University of Jammu 180001 Jammu India
| | - Mohd Saleem
- Department of Chemistry Govt.Postgraduate college Rajouri India
| | | |
Collapse
|
4
|
Sipos Á, Szennyes E, Hajnal NÉ, Kun S, Szabó KE, Uray K, Somsák L, Docsa T, Bokor É. Dual-Target Compounds against Type 2 Diabetes Mellitus: Proof of Concept for Sodium Dependent Glucose Transporter (SGLT) and Glycogen Phosphorylase (GP) Inhibitors. Pharmaceuticals (Basel) 2021; 14:ph14040364. [PMID: 33920838 PMCID: PMC8071193 DOI: 10.3390/ph14040364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
A current trend in the quest for new therapies for complex, multifactorial diseases, such as diabetes mellitus (DM), is to find dual or even multi-target inhibitors. In DM, the sodium dependent glucose cotransporter 2 (SGLT2) in the kidneys and the glycogen phosphorylase (GP) in the liver are validated targets. Several (β-D-glucopyranosylaryl)methyl (het)arene type compounds, called gliflozins, are marketed drugs that target SGLT2. For GP, low nanomolar glucose analogue inhibitors exist. The purpose of this study was to identify dual acting compounds which inhibit both SGLTs and GP. To this end, we have extended the structure-activity relationships of SGLT2 and GP inhibitors to scarcely known (C-β-D-glucopyranosylhetaryl)methyl arene type compounds and studied several (C-β-D-glucopyranosylhetaryl)arene type GP inhibitors against SGLT. New compounds, such as 5-arylmethyl-3-(β-D-glucopyranosyl)-1,2,4-oxadiazoles, 5-arylmethyl-2-(β-D-glucopyranosyl)-1,3,4-oxadiazoles, 4-arylmethyl-2-(β-D-glucopyranosyl)pyrimidines and 4(5)-benzyl-2-(β-D-glucopyranosyl)imidazole were prepared by adapting our previous synthetic methods. None of the studied compounds exhibited cytotoxicity and all of them were assayed for their SGLT1 and 2 inhibitory potentials in a SGLT-overexpressing TSA201 cell system. GP inhibition was also determined by known methods. Several newly synthesized (C-β-D-glucopyranosylhetaryl)methyl arene derivatives had low micromolar SGLT2 inhibitory activity; however, none of these compounds inhibited GP. On the other hand, several (C-β-D-glucopyranosylhetaryl)arene type GP inhibitor compounds with low micromolar efficacy against SGLT2 were identified. The best dual inhibitor, 2-(β-D-glucopyranosyl)-4(5)-(2-naphthyl)-imidazole, had a Ki of 31 nM for GP and IC50 of 3.5 μM for SGLT2. This first example of an SGLT-GP dual inhibitor can prospectively be developed into even more efficient dual-target compounds with potential applications in future antidiabetic therapy.
Collapse
Affiliation(s)
- Ádám Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Eszter Szennyes
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Nikolett Éva Hajnal
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Sándor Kun
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Katalin E. Szabó
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| | - Tibor Docsa
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Á.S.); (K.U.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| | - Éva Bokor
- Department of Organic Chemistry, University of Debrecen, POB 400, H-4002 Debrecen, Hungary; (E.S.); (N.É.H.); (S.K.); (K.E.S.)
- Correspondence: (L.S.); (T.D.); (É.B.); Tel.: +36-525-129-00 (ext. 22348) (L.S.); +36-525-186-00 (ext. 61192) (T.D.); +36-525-129-00 (ext. 22474) (É.B.)
| |
Collapse
|
5
|
Takeda D, Yoritate M, Yasutomi H, Chiba S, Moriyama T, Yokoo A, Usui K, Hirai G. β-Glycosyl Trifluoroborates as Precursors for Direct α-C-Glycosylation: Synthesis of 2-Deoxy-α- C-glycosides. Org Lett 2021; 23:1940-1944. [PMID: 33625241 DOI: 10.1021/acs.orglett.1c00402] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
C-Glycosides are metabolically stable mimics of natural O-glycosides and are expected to be useful tools for investigation of the biological functions of glycans. Here, we describe the synthesis of a series of aryl and vinyl C-glycosides by stereoinvertive sp3-sp2 cross-coupling reactions of 2-deoxyglycosyl boronic acid derivatives with aryl or vinyl halide, mediated by a photoredox/nickel dual catalytic system. Hydrogenation of the vinyl C-glycosides afforded C-linked 2'-deoxydisaccharide analogues.
Collapse
Affiliation(s)
- Daiki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Yoritate
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroki Yasutomi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Suzuka Chiba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takahiro Moriyama
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Yokoo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Zhou X, Jia T, Luo Y, Liu H, Zhang F, Zhao Y. Concise synthesis of thiophene C-nucleoside analogues bearing sugar residues and aromatic residues through dimerization and sulfur heterocyclization of sugar alkynes and substituted iodoethynylbenzene. Org Biomol Chem 2020; 18:1800-1805. [PMID: 32080693 DOI: 10.1039/c9ob02717c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The synthesis of thiophene C-nucleoside analogues bearing sugar residues (mono- and disaccharides) and aromatic residues has been achieved by symmetric dimerization of terminal sugar alkynes or unsymmetric dimerization of terminal sugar alkynes and substituted iodoethynylbenzene followed by sulfur heterocyclization in one pot. Homocoupling of terminal sugar alkynes and subsequent sulfur heterocyclization produce thiophene C-nucleoside analogues bearing disaccharides. Unsymmetric dimerization of terminal sugar alkynes and substituted iodoethynylbenzene followed by sulfur heterocyclization give thiophene C-nucleoside analogues bearing monosaccharide and aromatic residues. This approach is concise, general and mild, and is suitable for structurally diverse pyranosides, furanosides, and acyclic sugars. Thirty-two examples have been given and the corresponding products are obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Xiang Zhou
- College of Chemistry, The Key Lab of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Tongtong Jia
- College of Chemistry, The Key Lab of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yang Luo
- College of Chemistry, The Key Lab of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Hong Liu
- College of Chemistry, The Key Lab of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Fuyi Zhang
- College of Chemistry, The Key Lab of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yufen Zhao
- College of Chemistry, The Key Lab of Chemical Biology and Organic Chemistry, Zhengzhou University, Zhengzhou, Henan 450052, China. and Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Kinfe HH. Versatility of glycals in synthetic organic chemistry: coupling reactions, diversity oriented synthesis and natural product synthesis. Org Biomol Chem 2019; 17:4153-4182. [PMID: 30893410 DOI: 10.1039/c9ob00343f] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycals, 1,2-unsaturated sugar derivatives, are versatile starting materials for the synthesis of natural products and the generation of novel structural features in Diversity Oriented Synthesis (DOS). The versatility of glycals in synthesis emanates, among others, from the presence of the ring oxygen and the enol-ether type unsaturation, the different types of stable conformations they can adopt depending on the nature of the protecting groups present and the ease with which the protecting groups of the three hydroxy groups could be tailored to suite for a desired manipulation. This review summarizes the literature on the different transformations of the endo glycals into biologically relevant compounds such as chromans, thiochromans, chromenes, thiochromenes, peptidomimetics, bridged benzopyrans etc., as well as on the use of glycals as chiral building blocks for the synthesis of various natural products such as aspicilin, reblastatin, diospongins, decytospolides, osmundalactones, paclitaxel, isatisine, d-fagomine, and spliceostatin, reported post 2014.
Collapse
Affiliation(s)
- Henok H Kinfe
- Department of Chemistry, Center of Synthesis and Catalysis, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa.
| |
Collapse
|
8
|
Puthran D, Poojary B, Purushotham N, Harikrishna N, Nayak SG, Kamat V. Synthesis of novel Schiff bases using 2-Amino-5-(3-fluoro-4-methoxyphenyl)thiophene-3-carbonitrile and 1,3-Disubstituted pyrazole-4-carboxaldehydes derivatives and their antimicrobial activity. Heliyon 2019; 5:e02233. [PMID: 31485504 PMCID: PMC6717141 DOI: 10.1016/j.heliyon.2019.e02233] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/06/2019] [Accepted: 08/01/2019] [Indexed: 11/17/2022] Open
Abstract
2-Amino-5-(3-fluoro-4-methoxyphenyl)thiophene-3-carbonitrile have been synthesized from 1-(3-fluoro-4-methoxyphenyl)ethanone, malononitrile, a mild base and sulfur powder using Gewald synthesis technique and the intermediate was treated with 1,3-disubstituted pyrazole-4-carboxaldehyde to obtain the novel Schiff bases. 1,3-disubstituted pyrazole-4-carboxaldehyde derivatives have been synthesized by Vilsmeier-Haack reaction in the course of a multi-step reaction. The structure of novel compounds were established on the basis of their elemental analyses IR, 1H NMR, 13C NMR, and mass spectral data and then screened for their in vitro antimicrobial activity. Among them 5a, 5c, 5f and 5h showed excellent activity when compared to other derivatives. Remaining derivatives showed moderate activity.
Collapse
Affiliation(s)
- Divyaraj Puthran
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, Karnataka, 574199, India
- Solara Active Pharma Sciences, No. 120 A&B, Industrial Area, Baikampady, New Mangalore, Karnataka, 575011, India
| | - Boja Poojary
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, Karnataka, 574199, India
- Corresponding author.
| | - Nikil Purushotham
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, Karnataka, 574199, India
| | - Nandam Harikrishna
- Alivira Animal Health, Plot No.104-109,112,113 JNPC, Special Economic Zone, Paravada Mandal, Visakhapatnam, Andhra Pradesh-531019, India
| | - Soukhyarani Gopal Nayak
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, Karnataka, 574199, India
| | - Vinuta Kamat
- Department of Studies in Chemistry, Mangalore University, Mangalagangothri, Karnataka, 574199, India
| |
Collapse
|
9
|
Pałasz A, Cież D, Trzewik B, Miszczak K, Tynor G, Bazan B. In the Search of Glycoside-Based Molecules as Antidiabetic Agents. Top Curr Chem (Cham) 2019; 377:19. [PMID: 31165274 PMCID: PMC6548768 DOI: 10.1007/s41061-019-0243-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
This review is an effort to summarize recent developments in synthesis of O-glycosides and N-, C-glycosyl molecules with promising antidiabetic potential. Articles published after 2000 are included. First, the O-glycosides used in the treatment of diabetes are presented, followed by the N-glycosides and finally the C-glycosides constituting the largest group of antidiabetic drugs are described. Within each group of glycosides, we presented how the structure of compounds representing potential drugs changes and when discussing chemical compounds of a similar structure, achievements are presented in the chronological order. C-Glycosyl compounds mimicking O-glycosides structure, exhibit the best features in terms of pharmacodynamics and pharmacokinetics. Therefore, the largest part of the article is concerned with the description of the synthesis and biological studies of various C-glycosides. Also N-glycosides such as N-(β-d-glucopyranosyl)-amides, N-(β-d-glucopyranosyl)-ureas, and 1,2,3-triazolyl derivatives belong to the most potent classes of antidiabetic agents. In order to indicate which of the compounds presented in the given sections have the best inhibitory properties, a list of the best inhibitors is presented at the end of each section. In summary, the best inhibitors were selected from each of the summarizing figures and the results of the ranking were placed. In this way, the reader can learn about the structure of the compounds having the best antidiabetic activity. The compounds, whose synthesis was described in the article but did not appear on the figures presenting the structures of the most active inhibitors, did not show proper activity as inhibitors. Thus, the article also presents studies that have not yielded the desired results and show directions of research that should not be followed. In order to show the directions of the latest research, articles from 2018 to 2019 are described in a separate Sect. 5. In Sect. 6, biological mechanisms of action of the glycosides and patents of marketed drugs are described.
Collapse
Affiliation(s)
- Aleksandra Pałasz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
| | - Dariusz Cież
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Bartosz Trzewik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Katarzyna Miszczak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Grzegorz Tynor
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Bartłomiej Bazan
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
10
|
Kitamura K, Ando Y, Matsumoto T, Suzuki K. Total Synthesis of Aryl C-Glycoside Natural Products: Strategies and Tactics. Chem Rev 2017; 118:1495-1598. [DOI: 10.1021/acs.chemrev.7b00380] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kei Kitamura
- Department
of Applied Chemistry for Environment, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yoshio Ando
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Takashi Matsumoto
- School
of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1
Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Suzuki
- Department
of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
11
|
Mabkhot YN, Kaal NA, Alterary S, Al-Showiman SS, Farghaly TA, Mubarak MS. Antimicrobial activity of thiophene derivatives derived from ethyl (E)-5-(3-(dimethylamino)acryloyl)-4-methyl-2-(phenylamino)thiophene-3-carboxylate. Chem Cent J 2017; 11:75. [PMID: 29086901 PMCID: PMC5543014 DOI: 10.1186/s13065-017-0307-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/27/2017] [Indexed: 11/28/2022] Open
Abstract
Background The thiophene nucleus has been recognized as an important entity in the synthesis of heterocyclic compounds with promising pharmacological characteristics. Results A number of new heterocyclic compounds incorporating thiophene species have been prepared from the titled enaminone via the reaction with different nucleophiles and electrophiles. The structure elucidation of the designed compounds was derived from their spectral information. The results of antimicrobial activity of the prepared compounds revealed that derivatives 7b and 8 exhibited activity comparable to the standard drugs ampicillin and gentamicin for all tested bacteria species. Additionally, compound 3 displayed potent activity against Aspergillus fumigates, whereas compounds 5, 6, and 7a showed good activity against Syncephalastrum racemosum. Conclusions We have synthesized a number of new thiophene-containing compounds. The results of antimicrobial activity of the prepared compounds revealed that changing the substituents at position-2 of thiophene ring significantly affect their biological activity. The pyridine side chain derivatives in compounds 7a, 7b and 8 showed excellent antimicrobial activity.
Collapse
Affiliation(s)
- Yahia Nasser Mabkhot
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Nahed Ahmed Kaal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Seham Alterary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Salem S Al-Showiman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Thoraya A Farghaly
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt. .,Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University Makkah Almukkarramah, Mecca, 21514, Saudi Arabia.
| | | |
Collapse
|
12
|
Bokor É, Kun S, Goyard D, Tóth M, Praly JP, Vidal S, Somsák L. C-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential. Chem Rev 2017; 117:1687-1764. [PMID: 28121130 DOI: 10.1021/acs.chemrev.6b00475] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes. A classification of the preparative routes to these synthetic targets according to methodologies and compound categories is provided. Several of these compounds, regardless of their natural or synthetic origin, display antidiabetic properties due to enzyme inhibition (glycogen phosphorylase, protein tyrosine phosphatase 1B) or by inhibiting renal sodium-dependent glucose cotransporter 2 (SGLT2). The latter class of synthetic inhibitors, very recently approved as antihyperglycemic drugs, opens new perspectives in the pharmacological treatment of type 2 diabetes. Various compounds with the C-glycopyranosyl (het)arene motif were subjected to biological studies displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.
Collapse
Affiliation(s)
- Éva Bokor
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - Sándor Kun
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - David Goyard
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - Marietta Tóth
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| | - Jean-Pierre Praly
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2 - Glycochimie, UMR 5246, Université Claude Bernard Lyon 1 and CNRS , 43 Boulevard du 11 Novembre 1918, Villeurbanne F-69622, France
| | - László Somsák
- Department of Organic Chemistry, University of Debrecen , P.O. Box 400, Debrecen H-4002, Hungary
| |
Collapse
|
13
|
Sakamaki S, Kawanishi E, Nomura S. Exploration of Novel <i>C</i>-Glucoside Formation and Application for SGLT2 Inhibitors —Discovery of Canagliflozin as a SGLT2 Inhibitor—. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shigeki Sakamaki
- Research Unit/Nephrological & Endocrinological Science, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation
| | - Eiji Kawanishi
- Research Unit/Frontier Therapeutic Sciences, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation
| | - Sumihiro Nomura
- Research Unit/Nephrological & Endocrinological Science, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation
| |
Collapse
|
14
|
Shahavar Sulthana S, Arul Antony S, Balachandran C, Syed Shafi S. Thiophene and benzodioxole appended thiazolyl-pyrazoline compounds: Microwave assisted synthesis, antimicrobial and molecular docking studies. Bioorg Med Chem Lett 2015; 25:2753-7. [PMID: 26028159 DOI: 10.1016/j.bmcl.2015.05.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/29/2015] [Accepted: 05/14/2015] [Indexed: 12/29/2022]
Abstract
A novel series of thiophene and benzodioxole appended thiazolyl-pyrazoline derivatives have been designed, synthesized and evaluated against different bacteria and fungi. The antimicrobial activity of the synthesized compounds were screened using MIC method and were proved synthesized compounds 7o, 7r and 7t to show good antimicrobial activity against bacteria and fungi. In silico molecular docking studies revealed that all the synthesized molecules showed good binding energy toward the target receptor DNA topoisomerase IV, ranging from -10.42 to -11.66 kcal/mol.
Collapse
Affiliation(s)
- S Shahavar Sulthana
- PG & Research Department of Chemistry, Presidency College, Chennai 600 005, India
| | - S Arul Antony
- PG & Research Department of Chemistry, Presidency College, Chennai 600 005, India.
| | - C Balachandran
- Division of Microbiology and Cancer Biology, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - S Syed Shafi
- Department of Chemistry, Thiruvalluvar University, Serkadu, Vellore 632 115, India.
| |
Collapse
|
15
|
Kinfe HH, Makolo FL, Adokoh CK. Regiospecific Synthesis of 2-Halo-3-(2′-glucalyl)benzo[b]thiophenes. J Org Chem 2014; 79:7718-22. [DOI: 10.1021/jo5012762] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henok H. Kinfe
- Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Republic of South Africa
| | - Felix L. Makolo
- Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Republic of South Africa
| | - Christian K. Adokoh
- Department of Chemistry, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Republic of South Africa
| |
Collapse
|