1
|
Shimizu M, Fujie T, Shibata M, Komori T, Ninomiya K, Takahashi K, Uto T, Kuroda K. A low-viscous and flowable zwitterionic liquid. Chem Commun (Camb) 2025; 61:4702-4705. [PMID: 40017265 DOI: 10.1039/d4cc06448h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Zwitterionic liquids have attracted significant attention in various fields due to their low-toxicity and the ability to tune their functional properties. However, despite being liquid in thermo-dynamic definition, zwitterionic liquids are not commonly recognized as "liquids" by the general public because of their extremely high viscosity, comparable to that of peanut butter, which prevents stirring even with a strong magnetic stirrer. In this study, we developed a flowable and stirrable zwitterionic liquid, OE2imOE3C. Its viscosity was one-seventeenth that of traditional zwitterionic liquids. OE2imOE3C was able to stir and dissolve 11 wt% cellulose at 100 °C, which is a task unachievable by a typical zwitterionic liquid due to their high viscosity. Furthermore, OE2imOE3C exhibited low toxicity to yeast, consistent with other standard zwitterionic liquids. This study successfully achieved a significant reduction in viscosity without compromising other properties.
Collapse
Affiliation(s)
- Mitsuhiro Shimizu
- Faculty of Biological Science and Technology, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Tetsuo Fujie
- Faculty of Biological Science and Technology, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Mayu Shibata
- Faculty of Biological Science and Technology, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Tetsuo Komori
- Faculty of Biological Science and Technology, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Kazuaki Ninomiya
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kenji Takahashi
- Faculty of Biological Science and Technology, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Takuya Uto
- Organization for Promotion of Tenure Track, University of Miyazaki, Nishi 1-1 Gakuen-Kibanadai, Miyazaki 889-2192, Japan
| | - Kosuke Kuroda
- Faculty of Biological Science and Technology, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Ogasahara R, Ban K, Mae M, Akai S, Sawama Y. Deuterated Alkyl Sulfonium Salt Reagents; Importance of H/D Exchange Methods in Drug Discovery. ChemMedChem 2024; 19:e202400201. [PMID: 38740557 DOI: 10.1002/cmdc.202400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Deuterated drugs (heavy drugs) have recently been spotlighted as a new modality for small-molecule drugs because the pharmacokinetics of pharmaceutical drugs can be enhanced by replacing C-H bonds with more stable C-D bonds at metabolic positions. Therefore, deuteration methods for drug candidates are a hot topic in medicinal chemistry. Among them, the H/D exchange reaction (direct transformation of C-H bonds to C-D bonds) is a useful and straightforward method for creating novel deuterated target molecules, and over 20 reviews on the synthetic methods related to H/D exchange reactions have been published in recent years. Although various deuterated drug candidates undergo clinical trials, approved deuterated drugs possess CD3 groups in the same molecule. However, less diversification, except for the CD3 group, is a problem for future medicinal chemistry. Recently, we developed various deuterated alkyl (dn-alkyl) sulfonium salts based on the H/D exchange reaction of the corresponding hydrogen form using D2O as an inexpensive deuterium source to introduce CD3, CH3CD2, and ArCH2CD2 groups into drug candidates. This concept summarises recent reviews related to H/D exchange reactions and novel reagents that introduce the CD3 group, and our newly developed electrophilic dn-alkyl reagents are discussed.
Collapse
Affiliation(s)
- Riku Ogasahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuho Ban
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Miyu Mae
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshinari Sawama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka, 565-0871, Japan
- Deuterium Science Research Unit, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Kaga A, Saito H, Yamano M. Divergent and chemoselective deuteration of N-unsubstituted imidazoles enabled by precise acid/base control. Chem Commun (Camb) 2024; 60:8920-8923. [PMID: 39092668 DOI: 10.1039/d4cc02471k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Herein, we report acid/base-controlled and divergent deuteration of N-unsubstituted imidazoles in an imidazole-selective manner. This protocol enabled the deuteration of not only the 4-arylimidazoles but also the 2-arylimidazoles without labelling the aromatic rings. We demonstrated the advantages of this protocol by the synthesis of deuterated pharmaceuticals, which is difficult to achieve by means of transition metals.
Collapse
Affiliation(s)
- Atsushi Kaga
- Chemical R&D Laboratory, SPERA PHARMA, Inc., Osaka 532-0024, Japan.
| | - Hayate Saito
- Chemical R&D Laboratory, SPERA PHARMA, Inc., Osaka 532-0024, Japan.
| | - Mitsuhisa Yamano
- Chemical R&D Laboratory, SPERA PHARMA, Inc., Osaka 532-0024, Japan.
| |
Collapse
|
4
|
Luo J, Lu L, Montag M, Liang Y, Milstein D. Hydrogenative alkene perdeuteration aided by a transient cooperative ligand. Nat Chem 2023; 15:1384-1390. [PMID: 37667011 DOI: 10.1038/s41557-023-01313-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/03/2023] [Indexed: 09/06/2023]
Abstract
Deuterogenation of unsaturated organic compounds is an attractive route for installing C(sp3)-D bonds, but the existing methods typically use expensive D2 and introduce only two deuterium atoms per unsaturation. Herein we report the hydrogenative perdeuteration of alkenes using readily available H2 and D2O instead of D2, catalysed by an acridanide-based ruthenium pincer complex and resulting in the incorporation of up to 4.9 D atoms per C=C double bond in a single synthetic step. Importantly, adding a catalytic amount of thiol, which serves as a transient cooperative ligand, ensures the incorporation of deuterium rather than protium by balancing the rates of two sequential deuteration processes. The current method opens an avenue for installing perdeuteroalkyl groups at specific sites from widely available alkenes under mild conditions.
Collapse
Affiliation(s)
- Jie Luo
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Lijun Lu
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Montag
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Yaoyu Liang
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Shao F, Ma F, Li Y, Jiang W, Wei Z, Zhong X, Wang H, Wang L, Wang J. Ru Supported on p-phthalic acid-Mn Derived from a Mn Metal-Organic Framework for Thermo- and Electrocatalytic Synthesis of Ethylene-D4 Glycol. CHEMSUSCHEM 2023; 16:e202202395. [PMID: 37012670 DOI: 10.1002/cssc.202202395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Deuterium-labeled polyols are one of the most extensive applied chemicals in biochemistry and biophysics. However, the deuteriation still is insufficient, exhibiting a low deuterated ratio and indistinct reaction mechanism. Herein, Ru supported on MnBCD (MnBDC, derived from Mn p-phthalic acid metal-organic framework) as nanocatalyst with an agglomerated sheet-type structure; this allows the possibility of achieving both thermo- and electrocatalytic hydrogen isotope exchange (HIE) reaction. Furthermore, XPS characterization confirmed that the specific structural changes in the electron density of Ru outer layers were modulated through the impregnation and reduction processes. According to the change of outer electronic structure, hydrogen spillover and electron-rich flow promote the reaction of the catalyst in thermo- and electrocatalytic systems, respectively. In addition, the results indicate that a high deuterated ratio of 97 % can be obtained, hence the catalytic technology has enormous potential for the synthesis of a broad variety of deuterium-labeled compounds.
Collapse
Affiliation(s)
- Fangjun Shao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Fandong Ma
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Yuanan Li
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wenjie Jiang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Xing Zhong
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Ligeng Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
6
|
Jiang W, Shao F, Cheng J, Ma F, Wei Z, Zhong X, Wang H, Wang J. Calcium Aluminate Induced Pt(0)‐Pt(δ+) Coupling Boost Catalyzed H−D Exchange Reaction of Arenes with Deuterium Oxide. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Wenjie Jiang
- Institute of Industrial Catalysis State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 P.R. China
| | - Fangjun Shao
- Institute of Industrial Catalysis State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 P.R. China
| | - Jiaxu Cheng
- Institute of Industrial Catalysis State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 P.R. China
| | - Fandong Ma
- Institute of Industrial Catalysis State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 P.R. China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 P.R. China
| | - Xing Zhong
- Institute of Industrial Catalysis State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 P.R. China
| | - Hong Wang
- Institute of Industrial Catalysis State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 P.R. China
| | - Jianguo Wang
- Institute of Industrial Catalysis State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 P.R. China
| |
Collapse
|
7
|
Ano Y, Takahashi D, Yamada Y, Chatani N. Palladium-Catalyzed Skeletal Rearrangement of Cyclobutanones via C–H and C–C Bond Cleavage. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daichi Takahashi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Yamada
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Appert E, Martin‐Mingot A, Karam O, Zunino F, Michelet B, Bouazza F, Thibaudeau S. Superacid‐Mediated Late‐Stage Aromatic Polydeuteration of Pharmaceuticals. Chemistry 2022; 28:e202201583. [DOI: 10.1002/chem.202201583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Emeline Appert
- Superacid Group – Organic Synthesis Team IC2MP Université de Poitiers, UMR-CNRS 7285 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
- @rtMolecule 1 rue Georges Bonnet, Bâtiment B37 86000 Poitiers France
| | - Agnès Martin‐Mingot
- Superacid Group – Organic Synthesis Team IC2MP Université de Poitiers, UMR-CNRS 7285 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Omar Karam
- @rtMolecule 1 rue Georges Bonnet, Bâtiment B37 86000 Poitiers France
| | - Fabien Zunino
- @rtMolecule 1 rue Georges Bonnet, Bâtiment B37 86000 Poitiers France
| | - Bastien Michelet
- Superacid Group – Organic Synthesis Team IC2MP Université de Poitiers, UMR-CNRS 7285 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Fodil Bouazza
- @rtMolecule 1 rue Georges Bonnet, Bâtiment B37 86000 Poitiers France
| | - Sébastien Thibaudeau
- Superacid Group – Organic Synthesis Team IC2MP Université de Poitiers, UMR-CNRS 7285 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| |
Collapse
|
9
|
Akutsu-Suyama K, Sajiki H, Ueda M, Asamoto M, Tsutsumi Y. Heavy water recycling for producing deuterium compounds. RSC Adv 2022; 12:24821-24829. [PMID: 36128371 PMCID: PMC9430630 DOI: 10.1039/d2ra04369f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Deuterium oxide (D2O) is a special variety of water that serves as a crucial resource in a range of applications, but it is a costly and unusual resource. We therefore developed a new D2O concentration system that combines a polymer electrolyte water electrolyzer and a catalytic combustor for recycling used D2O. In this study, 1.6 L of used D2O, with a concentration of 93.1%, was electrolyzed for 13.6 h to obtain 0.62 L of D2O, with a concentration of 99.3%. In addition, the recombined water obtained by burning electrolytic gas using the catalytic combustor was also electrolyzed for 8.8 h to obtain 0.22 L of D2O, with a concentration of 99.0%. The estimated separation factor of this electrolyzer at 25 °C was 3.6, which is very close to the equilibrium constant of the water/hydrogen isotope exchange reaction. Recycled D2O was used as a deuterium source for the deuteration reaction of sodium octanoate, and 93.6% deuterated sodium octanoate was obtained. It is concluded that there were no impurities in the recycled D2O that interfered with the deuteration reaction. These results can lead to the development of a cost-effective deuteration method for these materials.
Collapse
Affiliation(s)
- Kazuhiro Akutsu-Suyama
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS) Tokai Ibaraki 319-1106 Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University Daigaku-nishi Gifu 501-1196 Japan
| | - Misaki Ueda
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS) Tokai Ibaraki 319-1106 Japan
| | - Makiko Asamoto
- FC Development, Co., Ltd, N5, Ibaraki University 4-12-1 Nakanarusawacho Hitachi-shi Ibaraki 316-8511 Japan
| | - Yasuyuki Tsutsumi
- FC Development, Co., Ltd, N5, Ibaraki University 4-12-1 Nakanarusawacho Hitachi-shi Ibaraki 316-8511 Japan
| |
Collapse
|
10
|
Sawama Y. Exhaustive Syntheses of Deuterium-labelled Compounds. YAKUGAKU ZASSHI 2022; 142:139-144. [DOI: 10.1248/yakushi.21-00173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Ashikari Y, Tamaki T, Takahashi Y, Yao Y, Atobe M, Nagaki A. Investigation of Parameter Control for Electrocatalytic Semihydrogenation in a Proton-Exchange Membrane Reactor Utilizing Bayesian Optimization. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.819752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Owing to its applicability in sustainable engineering, flow electrochemical synthesis in a proton-exchange membrane (PEM) reactor has attracted considerable attention. Because the reactions in PEM reactors are performed under electro-organic and flow-synthetic conditions, a higher number of reaction parameters exist compared to ordinary reactions. Thus, the optimization of such reactions requires significant amounts of energy, time, chemical and human resources. Herein, we show that the optimization of alkyne semihydrogenation in PEM reactors can be facilitated by means of Bayesian optimization, an applied mathematics strategy. Applying the optimized conditions, we also demonstrate the generation of a deuterated Z-alkene.
Collapse
|
12
|
Kimura Y, Kanematsu Y, Sakagami H, Rivera Rocabado DS, Shimazaki T, Tachikawa M, Ishimoto T. Hydrogen/Deuterium Transfer from Anisole to Methoxy Radicals: A Theoretical Study of a Deuterium-Labeled Drug Model. J Phys Chem A 2022; 126:155-163. [PMID: 34981930 DOI: 10.1021/acs.jpca.1c08514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, deuterium-labeled drugs, such as deutetrabenazine, have attracted considerable attention. Consequently, understanding the reaction mechanisms of deuterium-labeled drugs is crucial, both fundamentally and for real applications. To understand the mechanisms of H- and D-transfer reactions, in this study, we used deuterated anisole as a deutetrabenazine model and computationally considered the nuclear quantum effects of protons, deuterons, and electrons. We demonstrated that geometrical differences exist in the partially and fully deuterated methoxy groups and hydrogen-bonded structures of intermediates and transition states due to the H/D isotope effect. The observed geometrical features and electronic structures are ascribable to the different nuclear quantum effects of protons and deuterons. Primary and secondary kinetic isotope effects (KIEs) were calculated for H- and D-transfer reactions from deuterated and undeuterated anisole, with the calculated primary KIEs in good agreement with the corresponding experimental data. These results reveal that the nuclear quantum effects of protons and deuterons need to be considered when analyzing the reaction mechanisms of H- and D-transfer reactions and that a theoretical approach that directly includes nuclear quantum effects is a powerful tool for the analysis of H/D isotope effects in H- and D-transfer reactions.
Collapse
Affiliation(s)
- Yuka Kimura
- International College of Arts and Sciences, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027, Japan
| | - Yusuke Kanematsu
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.,Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Hiroki Sakagami
- Graduate School of Data Science, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027, Japan
| | - David S Rivera Rocabado
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Tomomi Shimazaki
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027, Japan
| | - Masanori Tachikawa
- Graduate School of Data Science, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027, Japan
| | - Takayoshi Ishimoto
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.,Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan.,Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa, Yokohama 236-0027, Japan
| |
Collapse
|
13
|
Park K, Oka N, Sawama Y, Ikawa T, Yamada T, Sajiki H. Platinum on Carbon-Catalysed Site-Selective H-D Exchange Reaction of Allylic Alcohols Using Alkyl Amines as a Hydrogen Source. Org Chem Front 2022. [DOI: 10.1039/d2qo00177b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed platinum on carbon-catalysed deuteration reaction of tert-allylic alcohols using deuterium oxide as a deuterium source. Amylamine was dehydrogenated by platinum on carbon to generate an appropriate amount of...
Collapse
|
14
|
Watanabe B, Nishitani S, Koeduka T. Synthesis of deuterium-labeled cinnamic acids: Understanding the volatile benzenoid pathway in the flowers of the Japanese loquat Eriobotrya japonica. J Labelled Comp Radiopharm 2021; 64:403-416. [PMID: 34243219 DOI: 10.1002/jlcr.3933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022]
Abstract
Cinnamic acids are widely distributed in plants, including crops for human use, and exhibit a variety of activities that are beneficial to human health. They also occupy a pivotal position in the biosynthesis of phenylpropanoids such as lignins, anthocyanins, flavonoids, and coumarins. In this context, deuterium-labeled cinnamic acids have been used as tracers and internal standards in food and medicinal chemistry as well as plant biochemistry. Therefore, a concise synthesis of deuterium-labeled cinnamic acids would be highly desirable. In this study, we synthesized deuterium-labeled cinnamic acids using readily available deuterium sources. We also investigated a hydrogen-deuterium exchange reaction in an ethanol-d1 /Et3 N system. This method can introduce deuterium atoms at the ortho and para positions of the phenolic hydroxy groups as well as at the C-2 position of alkyl cinnamates and is applicable to various phenolic compounds. Using the synthesized labeled compounds, we demonstrated that the benzenoid volatiles, such as 4-methoxybenzaldehyde, in the scent of the flowers of the Japanese loquat Eriobotrya japonica are biosynthesized from phenylalanine via cinnamic and 4-coumaric acids. This study provides easy access to a variety of deuterium-labeled (poly)phenols, as well as to useful tools for studies of the metabolism of cinnamic acids in living systems.
Collapse
Affiliation(s)
- Bunta Watanabe
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Shiori Nishitani
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Takao Koeduka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
15
|
Udagawa T, Murphy RB, Darwish TA, Tachikawa M, Mori S. H/D Isotope Effects in Keto-Enol Tautomerism of β-Dicarbonyl Compounds —Importance of Nuclear Quantum Effects of Hydrogen Nuclei—. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Taro Udagawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Rhys B. Murphy
- Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights NSW 2234, Australia
| | - Tamim A. Darwish
- Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights NSW 2234, Australia
| | - Masanori Tachikawa
- Graduate School of NanobioScience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Seiji Mori
- Institute of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
16
|
Yamada T, Park K, Sajiki H. Development of Solid Catalysts for Selective Reactions and their Application to Continuous-Flow Reactions. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| | | | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| |
Collapse
|
17
|
Sakakibara Y, Osada K, Uraki Y, Ubukata M, Shigetomi K. Direct deuteration of hinokitiol and its mechanistic study. Biosci Biotechnol Biochem 2021; 85:215-222. [PMID: 33590006 DOI: 10.1093/bbb/zbaa031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/05/2020] [Indexed: 11/14/2022]
Abstract
Hinokitiol has a broad antibacterial activity against bacteria and fungi. While its biosynthetic pathway has been intensively studied, its dynamics in natural environments, such as biodegradation pathway, remain unclear. In this study, the authors report a direct deuterium labeling of hinokitiol as a traceable molecular probe to serve those studies. Hinokitiol was subjected to the H2-Pd/C-D2O conditions and deuterated hinokitiol was obtained with excellent deuteration efficiencies and in moderate yield. The 1H and 2H NMR spectra indicated that all ring- and aliphatic hydrogens except that on C-6 were substituted by deuterium. According to the substrate scope and computational chemistry, deuteration on tropolone ring was suggested to proceed via D+-mediated process, and which was supported by the results of the experiment with trifluoroacetic acid and Pd(TPP)4. On the other hand, the deuteration on aliphatic group was predicted to be catalyzed by Pd(II) species.
Collapse
Affiliation(s)
| | - Kota Osada
- School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yasumitsu Uraki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Makoto Ubukata
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kengo Shigetomi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Park K, Ito N, Yamada T, Sajiki H. Efficient Continuous-Flow H–D Exchange Reaction of Aromatic Nuclei in D 2O/2-PrOH Mixed Solvent in a Catalyst Cartridge Packed with Platinum on Carbon Beads. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kwihwan Park
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Naoya Ito
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
19
|
Yousefi A, Sabounchei SJ, Hashemi A. New Pd‐phosphorus ylide complexes based on FC
60
as heterogeneous nano‐catalyst for H/D exchange reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Abed Yousefi
- Faculty of Chemistry Bu‐Ali Sina University Hamedan Iran
| | | | - Ali Hashemi
- Faculty of Chemistry Bu‐Ali Sina University Hamedan Iran
| |
Collapse
|
20
|
Vijay AK, Meyerstein D, Marks V, Albo Y. Kinetics of the reaction of H 2 with Pt 0-nanoparticles in aqueous suspensions monitored by the catalytic reduction of PW 12O 403−. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01255f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of the reaction between Pt0 nanoparticles and Hydrogen was measured in the absence of an electric field via following the formation of PW12O404−/5−.
Collapse
Affiliation(s)
| | - Dan Meyerstein
- Department of Chemical Sciences and The Radical Research Center
- Ariel University
- Ariel
- Israel
- Chemistry Department
| | - Vered Marks
- Department of Chemical Sciences
- Ariel University
- Ariel
- Israel
| | - Yael Albo
- Department of Chemical Engineering and The Radical Research Center
- Ariel University
- Ariel
- Israel
| |
Collapse
|
21
|
Manna P, Kundu M, Roy A, Adhikari S. Palladium-catalyzed directed synthesis of ortho-deuterated phenylacetic acid and analogues. Org Biomol Chem 2021; 19:6244-6249. [PMID: 34155489 DOI: 10.1039/d1ob00663k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthesis of deuterium-labeled organic compounds is of increased interest, especially after the approval of deutetrabenazine by the Food and Drug Administration in 2014. The selective incorporation of deuterium in the place of hydrogen not only represents uniqueness in terms of a novel chemical class, but it also can improve the pharmacokinetic profiles of drug molecules while retaining potency and other parameters; thus, hydrogen-deuterium (H/D) exchange methods have been proven to be powerful additions in different areas of chemical science. In that regard, metal-catalyzed deuterium labeling via C-H activation mediated by a unique inbuilt directing group (DG) can play a significant role in the synthesis of novel deuterated chemical entities. In this context, herein, we divulge our results relating to Pd(ii)-catalyzed deuterium incorporation (>97%) at the γ C(sp2)-position of pyridone-containing phenylacetic acid derivatives, where 3-amino-1-methyl-1H-pyridin-2-one (AMP) not only acts as an efficient N,O-directing group, but it also constitutes a part of the target molecules of medicinal importance. Our methodology, which has been optimized based on the effects of temperature, catalyst, time, and substrate scope, shows advantages over existing protocols, with non-selectivity or meager deuteration or the use of an expensive metal (catalytic or super stoichiometric) and a deuterated solvent, reported previously for the deuteration of phenylacetic acid and its derivatives. Moreover, towards our aim of synthesizing deuterium-labeled biologically relevant compounds, the gram scale synthesis of a deuterated analogue of biphenyl acetic acid (3), known to have activity against epileptic seizures, has also been successfully accomplished in high yields and with excellent isotope enrichment via implementing this protocol.
Collapse
Affiliation(s)
- Priyadarshi Manna
- TCG Lifesciences Pvt. Ltd, BN-7, Sector V, Salt Lake City, Kolkata-700091, India. and Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Mrinalkanti Kundu
- TCG Lifesciences Pvt. Ltd, BN-7, Sector V, Salt Lake City, Kolkata-700091, India.
| | - Ashis Roy
- TCG Lifesciences Pvt. Ltd, BN-7, Sector V, Salt Lake City, Kolkata-700091, India. and Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Susanta Adhikari
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| |
Collapse
|
22
|
Takakura R, Koyama K, Kuwata M, Yamada T, Sajiki H, Sawama Y. Hydroquinone and benzoquinone-catalyzed aqueous Knoevenagel condensation. Org Biomol Chem 2020; 18:6594-6597. [PMID: 32813006 DOI: 10.1039/d0ob01397h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A Knoevenagel condensation of various aldehydes with malononitrile effectively proceeded in the presence of hydroquinone/benzoquinone mixed catalysts at room temperature in H2O. Furthermore, γ-deuterium-labeled α,β-unsaturated nitrile derivatives were also constructed via a deuteration of an aliphatic aldehyde in D2O using a basic resin and the subsequent Knoevenagel condensation.
Collapse
Affiliation(s)
- Ryoya Takakura
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University 1-25-4 Daigakunishi, Gifu 501-1196, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Yamada T, Park K, Ito N, Masuda H, Teranishi W, Cui S, Sajiki H. Robust Continuous-Flow Synthesis of Deuterium-Labeled β-Nitroalcohols Catalyzed by Basic Anion Exchange Resin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kwihwan Park
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Naoya Ito
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hayato Masuda
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Wataru Teranishi
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
24
|
Hesk D. Highlights of C (sp 2 )-H hydrogen isotope exchange reactions. J Labelled Comp Radiopharm 2020; 63:247-265. [PMID: 31410875 DOI: 10.1002/jlcr.3801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
The highlights of C (sp2 )-H hydrogen isotope exchange (HIE) methods developed over the past 10 years are summarized in this review. Major developments include improved Ir(I) catalysts with greater functional group and solvent compatibility and the development of novel base metal catalysts for HIE. In addition, a number of novel Ru-based catalysts have been developed with promising activity. In the area of Pt- and Pd-catalysed exchange, in addition to new advances on heterogeneous Pt- and Pd-catalysed HIE by Sajiki and Shevchenko, a number of groups have reported on homogenous catalysts of Pt and Pd that show an interesting activity and selectivity.
Collapse
Affiliation(s)
- David Hesk
- Radiochemistry Section, Centre for Drug Discovery, RTI International, North Carolina, USA
| |
Collapse
|
25
|
Dong B, Cong X, Hao N. Silver-catalyzed regioselective deuteration of (hetero)arenes and α-deuteration of 2-alkyl azaarenes. RSC Adv 2020; 10:25475-25479. [PMID: 35518614 PMCID: PMC9055237 DOI: 10.1039/d0ra02358b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022] Open
Abstract
A simple silver-catalyzed regioselective deuteration of (hetero)arenes and α-deuteration of 2-alkyl azaarenes has been described. This strategy provides an efficient and practical avenue to access various deuterated electron-rich arenes, azaarenes and α-deuterated 2-alkyl azaarenes with good to excellent deuterium incorporation utilizing D2O as the source of deuterium atoms. A practical silver-catalyzed regioselective deuteration of (hetero)arenes and α-deuteration of 2-alkyl azaarenes utilizing D2O as a deuterium source has been developed.![]()
Collapse
Affiliation(s)
- Baobiao Dong
- Department of Pharmaceutical Sciences
- School of Pharmacy
- Southwest Medical University
- Luzhou 646000
- China
| | - Xuefeng Cong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- China
| | - Na Hao
- Department of Pharmaceutical Sciences
- School of Pharmacy
- Southwest Medical University
- Luzhou 646000
- China
| |
Collapse
|
26
|
Sawama Y, Niikawa M, Sajiki H. Stainless Steel Ball Milling for Hydrogen Generation and its Application for Reduction. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.1070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| |
Collapse
|
27
|
Sawama Y, Ban K, Akutsu-Suyama K, Nakata H, Mori M, Yamada T, Kawajiri T, Yasukawa N, Park K, Monguchi Y, Takagi Y, Yoshimura M, Sajiki H. Birch-Type Reduction of Arenes in 2-Propanol Catalyzed by Zero-Valent Iron and Platinum on Carbon. ACS OMEGA 2019; 4:11522-11531. [PMID: 31460258 PMCID: PMC6682079 DOI: 10.1021/acsomega.9b01130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
Catalytic arene reduction was effectively realized by heating in 2-propanol/water in the presence of Pt on carbon (Pt/C) and metallic Fe. 2-Propanol acted as a hydrogen source, obviating the need for flammable (and hence, dangerous and hard-to-handle) hydrogen gas, while metallic Fe acted as an essential co-catalyst to promote reduction. The chemical states of Pt and Fe in the reaction mixture were determined by X-ray absorption near-edge structure analysis, and the obtained results were used to suggest a plausible reaction mechanism, implying that catalytic reduction involved Pt- and Fe-mediated single-electron transfer and the dehydrogenation of 2-propanol.
Collapse
Affiliation(s)
- Yoshinari Sawama
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Kazuho Ban
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Kazuhiro Akutsu-Suyama
- Neutron
Science and Technology Center, Comprehensive
Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai-Mura, Naka-gun, Ibaraki 319-1106, Japan
| | - Hiroki Nakata
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Misato Mori
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Tsuyoshi Yamada
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Takahiro Kawajiri
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Naoki Yasukawa
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Kwihwan Park
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Yasunari Monguchi
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Yukio Takagi
- Catalyst
Development Center, N. E. Chemcat Corporation, 678 Ipponmatsu, Numazu, Shizuoka 410-0314, Japan
| | - Masatoshi Yoshimura
- Catalyst
Development Center, N. E. Chemcat Corporation, 678 Ipponmatsu, Numazu, Shizuoka 410-0314, Japan
| | - Hironao Sajiki
- Laboratory
of Organic Chemistry, Gifu Pharmaceutical
University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
28
|
Enomoto A, Kajita S, Fujita KI. Convenient Method for the Production of Deuterium Gas Catalyzed by an Iridium Complex and Its Application to the Deuteration of Organic Compounds. CHEM LETT 2019. [DOI: 10.1246/cl.180870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akane Enomoto
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shunpei Kajita
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ken-ichi Fujita
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
29
|
Sawama Y, Nakano A, Matsuda T, Kawajiri T, Yamada T, Sajiki H. H–D Exchange Deuteration of Arenes at Room Temperature. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00383] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshinari Sawama
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akihiro Nakano
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Takumi Matsuda
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Takahiro Kawajiri
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
30
|
Yamada T, Matsuo T, Ogawa A, Ichikawa T, Kobayashi Y, Masuda H, Miyamoto R, Bai H, Meguro K, Sawama Y, Monguchi Y, Sajiki H. Application of Thiol-Modified Dual-Pore Silica Beads as a Practical Scavenger of Leached Palladium Catalyst in C–C Coupling Reactions. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tomohiro Matsuo
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Aya Ogawa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Tomohiro Ichikawa
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yutaka Kobayashi
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hayato Masuda
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Riichi Miyamoto
- DPS Inc., 1-39-2215 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Hongzhi Bai
- DPS Inc., 1-39-2215 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Kanji Meguro
- DPS Inc., 1-39-2215 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Yoshinari Sawama
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yasunari Monguchi
- Laboratory of Organic Chemistry, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
31
|
Zhao D, Luo H, Chen B, Chen W, Zhang G, Yu Y. Palladium-Catalyzed H/D Exchange Reaction with 8-Aminoquinoline as the Directing Group: Access to ortho-Selective Deuterated Aromatic Acids and β-Selective Deuterated Aliphatic Acids. J Org Chem 2018; 83:7860-7866. [DOI: 10.1021/acs.joc.8b00734] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Donghong Zhao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haofan Luo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Binhui Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenteng Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guolin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yongping Yu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
32
|
Engel RV, Niemeier J, Fink A, Rose M. Unravelling the Mechanism of the Ru/C-Catalysed Isohexide and Ether Isomerization by Hydrogen Isotope Exchange. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rebecca V. Engel
- Institut f. Technische & Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
- Cardiff Catalysis Institute; Cardiff University; 42 Park Place CF10 3AT Cardiff UK
| | - Johannes Niemeier
- Institut f. Technische & Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
- Technische Chemie II, Ernst-Berl-Institut; Technische Universität Darmstadt; Alarich-Weiss-Str. 8 64287 Darmstadt Germany
| | - Anja Fink
- Institut f. Technische & Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
| | - Marcus Rose
- Institut f. Technische & Makromolekulare Chemie; RWTH Aachen University; Worringerweg 2 52074 Aachen Germany
- Technische Chemie II, Ernst-Berl-Institut; Technische Universität Darmstadt; Alarich-Weiss-Str. 8 64287 Darmstadt Germany
| |
Collapse
|
33
|
Kobayashi Y, Nanba Y, Tanabe S. A New Method of Deuterium Incorporation to TMS-Epoxyalcohol Using Sodium Methylsulfinylmethylide-d5 (NaDMSO-d5). HETEROCYCLES 2018. [DOI: 10.3987/com-18-s(t)32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|