1
|
Tinkov AA, Filippini T, Ajsuvakova OP, Skalnaya MG, Aaseth J, Bjørklund G, Gatiatulina ER, Popova EV, Nemereshina ON, Huang PT, Vinceti M, Skalny AV. Cadmium and atherosclerosis: A review of toxicological mechanisms and a meta-analysis of epidemiologic studies. ENVIRONMENTAL RESEARCH 2018; 162:240-260. [PMID: 29358116 DOI: 10.1016/j.envres.2018.01.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 05/20/2023]
Abstract
Cadmium has been proposed to be the one of the factors of atherosclerosis development, although the existing data are still controversial. The primary objective of the present study is the review and the meta-analysis of studies demonstrating the association between Cd exposure and atherosclerosis as well as review of the potential mechanisms of such association. We performed a systematic search in the PubMed-Medline database using the MeSH terms cadmium, cardiovascular disease, atherosclerosis, coronary artery disease, myocardial infarction, stroke, mortality and humans up through December 20, 2017. Elevated urinary Cd levels were associated with increased mortality for cardiovascular disease (HR = 1.34, 95% CI: 1.07-1.67) as well as elevated blood Cd levels (HR = 1.78, 95% CI: 1.24-2.56). Analysis restricted to never smokers showed similar, though more imprecise, results. Consistently, we also observed an association between Cd exposure markers (blood and urine) and coronary heart disease, stroke, and peripheral artery disease. Moreover, Cd exposure was associated with atherogenic changes in lipid profile. High Cd exposure was associated with higher TC levels (OR = 1.48, 95% CI: 1.10-2.01), higher LDL-C levels (OR = 1.31, 95% CI 0.99-1.73) and lower HDL-C levels (OR = 1.96, 95% CI: 1.09-3.55). The mechanisms of atherogenic effect of cadmium may involve oxidative stress, inflammation, endothelial dysfunction, enhanced lipid synthesis, up-regulation of adhesion molecules, prostanoid dysbalance, as well as altered glycosaminoglycan synthesis.
Collapse
Affiliation(s)
- Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia.
| | - Tommaso Filippini
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Olga P Ajsuvakova
- All-Russian Research Institute of Phytopathology, Odintsovo, Moscow Region, Russia
| | | | - Jan Aaseth
- Faculty of Public Health, Inland Norway University of Applied Sciences, Elverum, Norway; Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | | | - Elizaveta V Popova
- St. Joseph University in Tanzania, St. Joseph College of Health Sciences, Dar es Salaam, Tanzania
| | | | | | - Marco Vinceti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Modena, Italy
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Orenburg State University, Orenburg, Russia; Trace Element Institute for UNESCO, Lyon, France
| |
Collapse
|
2
|
Ferreira VR, Azenha MA, Bustamante AG, Mêna M, Moura C, Pereira CM, Silva A. Metal cation sorption ability of immobilized and reticulated chondroitin sulfate or fucoidan through a sol-gel crosslinking scheme. MATERIALS TODAY COMMUNICATIONS 2016; 8:172-182. [DOI: 10.1016/j.mtcomm.2016.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Abstract
Cadmium and lead are heavy metals that have been shown to induce vascular disorders such as atherosclerosis in experimental animals. However, little is known about the mechanisms by which cadmium and lead induce vascular toxicity. The toxicity was investigated using a culture system of vascular endothelial and smooth muscle cells. Cadmium destroys the monolayer of endothelial cells and the cytotoxicity is protected by zinc and copper without metallothionein induction. On the other hand, lead does not exhibit cytotoxicity but inhibits the repair of endothelial monolayers after wounding by a lower response to endogenous basic fibroblast growth factor mediated by suppression of the synthesis of perlecan, a large heparan sulfate proteoglycan. In addition, cadmium and lead reduce endothelial fibrinolytic activity by induction of plasminogen activator inhibitor type 1 synthesis and by inhibition of tissue-type plasminogen activator, respectively. In vascular smooth muscle cells, cadmium and lead can promote their proliferation and influence proteoglycan synthesis and fibrinolysis in different manners. These results indicate that cadmium and lead have specific toxicities in the proliferation, fibrinolysis, and extracellular matrix formation of vascular endothelial and smooth muscle cells.
Collapse
Affiliation(s)
- Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan.
| |
Collapse
|