1
|
Dwivedi GR, Pathak N, Tiwari N, Negi AS, Kumar A, Pal A, Sharma A, Darokar MP. Synergistic Antibacterial Activity of Gallic Acid Based Chalcone Indl 2 by Inhibiting Efflux Pump Transporters. Chem Biodivers 2024; 21:e202301820. [PMID: 38372508 DOI: 10.1002/cbdv.202301820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/20/2024]
Abstract
As a part of novel discovery of drugs from natural resources, present study was undertaken to explore the antibacterial potential of chalcone Indl-2 in combination with different group of antibiotics. MIC of antibiotics was reduced up to eight folds against the different cultures of E. coli by both chalcones. Among the two compounds, the i. e. 1-(3', 4,'5'-trimethoxyphenyl)-3-(3-Indyl)-prop-2-enone (6, Indl-2), a chalcone derivative of gallic acid (Indl-2) was better along with tetracycline (TET) worked synergistically and was found to inhibit efflux transporters as obvious by ethidium bromide efflux confirmed by ATPase assays and docking studies. In combination, Indl-2 kills the MDREC-KG4 cells, post-antibiotic effect (PAE) of TET was prolonged and mutant prevention concentration (MPC) of TET was also decreased. In-vivo studies revealed that Indl-2 reduces the concentration of TNF-α. In acute oral toxicity study, Indl-2 was non-toxic and well tolerated up-to dose of 2000 mg/kg. Perhaps, the study is going to report gallic acid derived chalcone as synergistic agent acting via inhibiting the primary efflux pumps.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur, 273013, U.P., India
| | - Nandini Pathak
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Nimisha Tiwari
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
| | - Arvind Singh Negi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Akhil Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
| | - Anirban Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. - 201002, India
| |
Collapse
|
2
|
Raj Dwivedi G, Khwaja S, Singh Negi A, Panda SS, Swaroop Sanket A, Pati S, Chand Gupta A, Bawankule DU, Chanda D, Kant R, Darokar MP. Design, synthesis and drug resistance reversal potential of novel curcumin mimics Van D: Synergy potential of curcumin mimics. Bioorg Chem 2021; 106:104454. [PMID: 33213895 DOI: 10.1016/j.bioorg.2020.104454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/03/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022]
Abstract
Being crucial part of plant-based novel discovery of drug from natural resources, a study was done to explore the antibacterial potential of curcumin mimics in combination with antibiotics against multidrug resistant isolates of Pseudomonas aeruginosa. The best candidate Van D, a curcumin mimics reduced the MIC of tetracycline (TET) up to 16 folds against multidrug resistant clinical isolates. VanD further inhibited the efflux pumps as evident by ethidium bromide efflux and by in-silico docking studies. In another experiment, it was also found that Van D inhibits biofilm synthesis. This derivative kills the KG-P2, an isolate of P. aeruginosa in a time dependent manner, the post-antibiotic effect (PAE) of tetracycline was extended as well as mutant prevention concentration (MPC) of TET was also decreased. In Swiss albino mice, Van D reduced the proinflammatory cytokines concentration. In acute oral toxicity study, this derivative was well tolerated and found to be safe up to 1000 mg/kg dose. To the best of our knowledge, this is the first report on curcumin mimics as synergistic agent via inhibition of efflux pump.
Collapse
Affiliation(s)
- Gaurav Raj Dwivedi
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur 273013, Uttar Pradesh, India.
| | - Sadiya Khwaja
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arvind Singh Negi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Swati S Panda
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - A Swaroop Sanket
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Sanghamitra Pati
- ICMR-Regional Medical Research Centre, Bhubaneshwar 751023, Odisha, India
| | - Amit Chand Gupta
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India
| | - Dnyaneshwar Umrao Bawankule
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debabrata Chanda
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajni Kant
- Microbiology Department, ICMR-Regional Medical Research Centre, Gorakhpur 273013, Uttar Pradesh, India
| | - Mahendra P Darokar
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, P.O. CIMAP, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Martins A, Hunyadi A, Amaral L. Mechanisms of resistance in bacteria: an evolutionary approach. Open Microbiol J 2013; 7:53-8. [PMID: 23560029 PMCID: PMC3613773 DOI: 10.2174/1874285801307010053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 02/02/2023] Open
Abstract
Acquisition of resistance is one of the major causes of failure in therapy of bacterial infections. According to the World Health Organization (WHO), thousands of deaths caused by Salmonella sp., Escherichia coli, Staphylococcus aureus or Mycobacteria tuberculosis are due to failure in therapy caused by resistance to the chemotherapeutic agents. Understanding the mechanisms of resistance acquisition by the bacterial strains is therefore essential to prevent and overcome resistance. However, it is very difficult to extrapolate from in vitro studies, where the variables are far less and under constant control, as compared to what happens in vivo where the chosen chemotherapeutic, its effective dose, and the patient's immune system are variables that differ substantially case-by-case. The aim of this review is to provide a new perspective on the possible ways by which resistance is acquired by the bacterial strains within the patient, with a special emphasis on the adaptive response of the infecting bacteria to the administered antibiotic.
Collapse
Affiliation(s)
- Ana Martins
- Unidade de Parasitologia e Microbiologia Médica, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal ; Institute of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm Tér 10, 6720 Szeged, Hungary
| | | | | |
Collapse
|