1
|
Jeon S, Sontag SA, Richardson LD, Olmos AA, Trevino MA. Neuromuscular electrical stimulation producing low evoked force elicits the repeated bout effect on muscle damage markers of the elbow flexors. SPORTS MEDICINE AND HEALTH SCIENCE 2025; 7:124-131. [PMID: 39811410 PMCID: PMC11726036 DOI: 10.1016/j.smhs.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 01/16/2025] Open
Abstract
This study examined the repeated bout effect (RBE) on muscle damage markers following two bouts of neuromuscular electrical stimulation (NMES) in untrained individuals. Following familiarization, participants received 45 consecutive NMES to the biceps brachii at an intensity that produced low evoked force for the elbow flexors. Muscle damage markers (maximal voluntary isometric contraction [MVIC], elbow range of motion [ROM], muscle soreness via visual analogue scale [VAS] scores, pressure pain threshold [PPT], and muscle thickness) were measured before (PRE), after (POST), 1 day after (24 POST), and 2 days after (48 POST) NMES. Following 1 week of rest, procedures were replicated. Separate repeated measures two-way ANOVAs examined each measure. There were no interactions or bout main effects for MVIC or ROM. Time main effects indicated PRE MVIC was greater than POST (p = 0.002) and 24-POST (p = 0.024), and PRE ROM was greater than POST (p = 0.036). There was no interaction for muscle thickness. Respective time and bout main effects indicated muscle thickness at PRE was less than POST (p = 0.017), and second-bout muscle thickness (p = 0.050) was less compared to the initial-bout. For PPT, there was an interaction (p = 0.019). Initial-bout PRE PPT was less than POST (p = 0.033). Initial-bout 48-POST PPT was less than second-bout 48-POST (p = 0.037). There was a significant interaction for VAS (p = 0.009). Initial-bout PRE VAS was less than POST (p = 0.033) and 24-POST (p = 0.015). Initial-bout POST and 24-POST VAS were greater than second-bout POST (p = 0.023) and 24-POST (p = 0.006), respectively. The results support RBE on muscle damage markers related to inflammation, but not MVIC and ROM.
Collapse
Affiliation(s)
- Sunggun Jeon
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Northwestern State University, Natchitoches, LA, 71497, USA
| | - Stephanie A. Sontag
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Lyric D. Richardson
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Alex A. Olmos
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Michael A. Trevino
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA
| |
Collapse
|
2
|
Ackermann PW, Juthberg R, Flodin J. Unlocking the potential of neuromuscular electrical stimulation: achieving physical activity benefits for all abilities. Front Sports Act Living 2024; 6:1507402. [PMID: 39712079 PMCID: PMC11660796 DOI: 10.3389/fspor.2024.1507402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024] Open
Abstract
Neuromuscular Electrical Stimulation (NMES) uses electrical impulses to induce muscle contractions, providing benefits in rehabilitation, muscle activation, and as an adjunct to exercise, particularly for individuals experiencing immobilization or physical disability. NMES technology has significantly progressed, with advancements in device development and a deeper understanding of treatment parameters, such as frequency, intensity, and pulse duration. These improvements have expanded NMES applications beyond rehabilitation to include enhanced post-exercise recovery, improved blood glucose uptake, and increased lower limb venous return, potentially reducing thrombotic risks. Despite its benefits, NMES faces challenges in user compliance, often due to improper electrode placement and discomfort during treatment. Research highlights the importance of optimizing stimulation parameters, including electrode positioning, to improve both comfort and treatment efficacy. Recent innovations, such as automated processes for locating optimal stimulation points and adaptable electrode sizes, aim to address these issues. When combined with wearable technologies, these innovations could improve NMES treatment adherence and deliver more consistent, long-term therapeutic outcomes for patients with various physical limitations. Together, these developments indicate a promising future for NMES, presenting a valuable tool to enhance the benefits of physical activity across diverse populations, from rehabilitative care to broader health and wellness applications.
Collapse
Affiliation(s)
- Paul W. Ackermann
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Trauma, Acute Surgery and Orthopedics, Karolinska University Hospital, Stockholm, Sweden
| | - Robin Juthberg
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Flodin
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Descollonges M, Chaney R, Garnier P, Prigent-Tessier A, Brugniaux JV, Deley G. Electrical stimulation: a potential alternative to positively impact cerebral health? Front Physiol 2024; 15:1464326. [PMID: 39371600 PMCID: PMC11450234 DOI: 10.3389/fphys.2024.1464326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
An increasing body of evidence confirms the effectiveness of physical exercise (PE) in promoting brain health by preventing age-related cognitive decline and reducing the risk of neurodegenerative diseases. The benefits of PE are attributed to neuroplasticity processes which have been reported to enhance cerebral health. However, moderate to high-intensity PE is necessary to induce these responses and these intensities cannot always be achieved especially by people with physical limitations. As a countermeasure, electrical stimulation (ES) offers several benefits, particularly for improving physical functions, for various neurological diseases. This review aims to provide an overview of key mechanisms that could contribute to the enhancement in brain health in response to ES-induced exercise, including increases in cerebral blood flow, neuronal activity, and humoral pathways. This narrative review also focuses on the effects of ES protocols, applied to both humans and animals, on cognition. Despite a certain paucity of research when compared to the more classical aerobic exercise, it seems that ES could be of interest for improving cerebral health, particularly in people who have difficulty engaging in voluntary exercise.
Collapse
Affiliation(s)
- Maël Descollonges
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
- Kurage, Lyon, France
| | - Rémi Chaney
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
| | - Philippe Garnier
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
- Département Génie Biologique, IUT, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
| | - Julien V. Brugniaux
- INSERM UMR 1300 – Laboratoire HP2, University Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Gaëlle Deley
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
| |
Collapse
|
4
|
Uçar N, Öner H, Kuş MA, Karaca H, Fırat T. The effect of neuromuscular electrical stimulation applied at different muscle lengths on muscle architecture and sarcomere morphology in rats. Anat Rec (Hoboken) 2024; 307:356-371. [PMID: 37194371 DOI: 10.1002/ar.25240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
Neuromuscular electrical stimulation (NMES) is often used to increase muscle strength and functionality. Muscle architecture is important for the skeletal muscle functionality. The aim of this study was to investigate the effects of NMES applied at different muscle lengths on skeletal muscle architecture. Twenty-four rats were randomly assigned to four groups (two NMES groups and two control groups). NMES was applied on the extensor digitorum longus muscle at long muscle length, which is the longest and stretched position of the muscle at 170° plantar flexion, and at medium muscle length, which is the length of the muscle at 90° plantar flexion. A control group was created for each NMES group. NMES was applied for 8 weeks, 10 min/day, 3 days/week. After 8 weeks, muscle samples were removed at the NMES intervention lengths and examined macroscopically, and microscopically using a transmission electron microscope and streo-microscope. Muscle damage, and architectural properties of the muscle including pennation angle, fibre length, muscle length, muscle mass, physiological cross-sectional area, fibre length/muscle length, sarcomere length, sarcomere number were then evaluated. There was an increase in fibre length and sarcomere number, and a decrease in pennation angle at both lengths. In the long muscle length group, muscle length was increased, but widespread muscle damage was observed. These results suggest that the intervention of NMES at long muscle length can increase the muscle length but also causes muscle damage. In addition, the greater longitudinal increase in muscle length may be a result of the continuous degeneration-regeneration cycle.
Collapse
Affiliation(s)
- Nehir Uçar
- Department of Therapy and Rehabilitation, Vocational School of Health Sciences, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Hakan Öner
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Murat Abdulgani Kuş
- Department of Emergency Aid and Disaster Management, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Harun Karaca
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Tüzün Fırat
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Carvalho MTX, Guesser Pinheiro VH, Alberton CL. Effectiveness of neuromuscular electrical stimulation training combined with exercise on patient-reported outcomes measures in people with knee osteoarthritis: A systematic review and meta-analysis. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2024; 29:e2062. [PMID: 37926438 DOI: 10.1002/pri.2062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE This study examined the effectiveness of neuromuscular electrical stimulation (NMES) added to the exercise or superimposed on voluntary contractions on patient-reported outcomes measures (PROMs) in people with knee osteoarthritis (OA). METHODS This systematic review was described according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Randomized controlled trials (RCTs) were obtained from a systematic literature search in five electronic databases (PubMed, PEDro, LILACS, EMBASE, and SPORTDiscus) in April 2022. We described the effects of intervention according to each PROMs (scores for Pain; Self-reported functional ability; Symptoms (hear clicking, swelling, catching, restricted range of motion, and stiffness); Daily living function; Sports function; and Quality of life) and used a random-effect model to examine the impact of NMES plus exercise on pain compared with exercise in people with knee OA. RESULTS Six RCTs (n = 367) were included. In the qualitative synthesis, the systematic literature analysis showed improvement in pain after NMES plus exercise compared with exercise alone in three studies. The other three studies revealed no difference between groups in pain, although similar improvement after treatments. In the meta-analysis, NMES at a specific joint angle combined with exercise was not superior to exercise alone in pain management (standardized mean difference = -0.33, 95% CI = -1.05 to 0.39, p = 0.37). There was no additional effect of NMES on exercise on self-reported functional ability, stiffness, and physical function compared with exercise alone. In only one study, symptoms, activities of daily living, sports function, and quality of life improved after whole-body electrostimulation combined with exercise. CONCLUSION This review found insufficient evidence for the effectiveness of NMES combined with exercise in treating knee OA considering PROMs. While pain relief was observed in some studies, more high-quality clinical trials are needed to support the use of NMES added to the exercise in clinical practice. Electrical stimulation in a whole-body configuration combined with exercise shows promise as an alternative treatment option.
Collapse
|
6
|
Jomard C, Gondin J. Influence of sexual dimorphism on satellite cell regulation and inflammatory response during skeletal muscle regeneration. Physiol Rep 2023; 11:e15798. [PMID: 37798097 PMCID: PMC10555529 DOI: 10.14814/phy2.15798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023] Open
Abstract
After injury, skeletal muscle regenerates thanks to the key role of satellite cells (SC). The regeneration process is supported and coordinated by other cell types among which immune cells. Among the mechanisms involved in skeletal muscle regeneration, a sexual dimorphism, involving sex hormones and more particularly estrogens, has been suggested. However, the role of sexual dimorphism on skeletal muscle regeneration is not fully understood, likely to the use of various experimental settings in both animals and human. This review aims at addressing how sex and estrogens regulate both the SC and the inflammatory response during skeletal muscle regeneration by considering the different experimental designs used in both animal models (i.e., ovarian hormone deficiency, estrogen replacement or supplementation, treatments with estrogen receptors agonists/antagonists and models knockout for estrogen receptors) and human (hormone therapy replacement, pre vs. postmenopausal, menstrual cycle variation…).
Collapse
Affiliation(s)
- Charline Jomard
- Institut NeuroMyoGène (INMG), Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université Claude Bernard LyonLyonFrance
| | - Julien Gondin
- Institut NeuroMyoGène (INMG), Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université Claude Bernard LyonLyonFrance
| |
Collapse
|
7
|
Mavropalias G, Boppart M, Usher KM, Grounds MD, Nosaka K, Blazevich AJ. Exercise builds the scaffold of life: muscle extracellular matrix biomarker responses to physical activity, inactivity, and aging. Biol Rev Camb Philos Soc 2023; 98:481-519. [PMID: 36412213 DOI: 10.1111/brv.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Skeletal muscle extracellular matrix (ECM) is critical for muscle force production and the regulation of important physiological processes during growth, regeneration, and remodelling. ECM remodelling is a tightly orchestrated process, sensitive to multi-directional tensile and compressive stresses and damaging stimuli, and its assessment can convey important information on rehabilitation effectiveness, injury, and disease. Despite its profound importance, ECM biomarkers are underused in studies examining the effects of exercise, disuse, or aging on muscle function, growth, and structure. This review examines patterns of short- and long-term changes in the synthesis and concentrations of ECM markers in biofluids and tissues, which may be useful for describing the time course of ECM remodelling following physical activity and disuse. Forces imposed on the ECM during physical activity critically affect cell signalling while disuse causes non-optimal adaptations, including connective tissue proliferation. The goal of this review is to inform researchers, and rehabilitation, medical, and exercise practitioners better about the role of ECM biomarkers in research and clinical environments to accelerate the development of targeted physical activity treatments, improve ECM status assessment, and enhance function in aging, injury, and disease.
Collapse
Affiliation(s)
- Georgios Mavropalias
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, and Centre for Healthy Aging, Health Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Discipline of Exercise Science, Murdoch University, Murdoch, WA, 6150, Australia
| | - Marni Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, 1206 South Fourth St, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana- Champaign, 405 N. Mathews Avenue, Urbana, IL, 61801, USA
| | - Kayley M Usher
- School of Biomedical Sciences, University of Western Australia (M504), 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Miranda D Grounds
- School of Human Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
8
|
Barss TS, Sallis BWM, Miller DJ, Collins DF. Does increasing the number of channels during neuromuscular electrical stimulation reduce fatigability and produce larger contractions with less discomfort? Eur J Appl Physiol 2021; 121:2621-2633. [PMID: 34131798 DOI: 10.1007/s00421-021-04742-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Neuromuscular electrical stimulation (NMES) is often delivered at frequencies that recruit motor units (MUs) at unphysiologically high rates, leading to contraction fatigability. Rotating NMES pulses between multiple electrodes recruits subpopulations of MUs from each site, reducing MU firing rates and fatigability. This study was designed to determine whether rotating pulses between an increasing number of stimulation channels (cathodes) reduces contraction fatigability and increases the ability to generate torque during NMES. A secondary outcome was perceived discomfort. METHODS Fifteen neurologically intact volunteers completed four sessions. NMES was delivered over the quadriceps through 1 (NMES1), 2 (NMES2), 4 (NMES4) or 8 (NMES8) channels. Fatigability was assessed over 100 contractions (1-s on/1-s off) at an initial contraction amplitude that was 20% of a maximal voluntary contraction. Torque-frequency relationships were characterized over six frequencies from 20 to 120 Hz. RESULTS NMES4 and NMES8 resulted in less decline in peak torque (42 and 41%) over the 100 contractions than NMES1 and NMES2 (53 and 50% decline). Increasing frequency from 20 to 120 Hz increased torque by 7, 13, 21 and 24% MVC, for NMES1, NMES2, NMES4 and NMES8, respectively. Perceived discomfort was highest during NMES8. CONCLUSION NMES4 and NMES8 reduced contraction fatigability and generated larger contractions across a range of frequencies than NMES1 and NMES2. NMES8 produced the most discomfort, likely due to small electrodes and high current density. During NMES, more is not better and rotating pulses between four channels may be optimal to reduce contraction fatigability and produce larger contractions with minimal discomfort compared to conventional NMES configurations.
Collapse
Affiliation(s)
- Trevor S Barss
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 4-219 Van Vliet Complex, Edmonton, AB, T6G 2H9, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Bailey W M Sallis
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 4-219 Van Vliet Complex, Edmonton, AB, T6G 2H9, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Dylan J Miller
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 4-219 Van Vliet Complex, Edmonton, AB, T6G 2H9, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, 4-219 Van Vliet Complex, Edmonton, AB, T6G 2H9, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Skeletal Muscle Damage Produced by Electrically Evoked Muscle Contractions: Corrigendum. Exerc Sport Sci Rev 2021; 49:146. [PMID: 33720916 DOI: 10.1249/jes.0000000000000246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|