1
|
Špaková I, Smolko L, Sabolová G, Badovská Z, Kalinová K, Madreiter-Sokolowski C, Graier WF, Mareková M, Vašková J, Rabajdová M. Selective targeting of genes regulated by zinc finger proteins in endometriosis and endometrioid adenocarcinoma by zinc niflumato complex with neocuproine. Sci Rep 2025; 15:10126. [PMID: 40128272 PMCID: PMC11933352 DOI: 10.1038/s41598-025-94249-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
Inadequate angiogenesis of endometriotic implants stimulated by the inflammatory microenvironment in the uterine region leads to the development of gynecological diseases, which significantly reduce the fertility and vitality of young women. Angiogenic processes are controlled by factors whose activities are regulated at the gene level by reactive oxygen species (ROS), hypoxia-induced factors (HIFs), and zinc-finger proteins (ZnFs) or posttranscriptionally via non-coding RNAs. The cooperation of these factors is responsible for the manifestation of pathological stimuli in the form of endometriosis of the body of the uterus, ovaries, or peritoneum, from which endometrioid carcinoma can develop. Molecules that can control gene expression by their intercalation to target DNA sequence, such as [Zn(neo)(nif)2], could prevent the hyperactivation of pro-angiogenic pathways (decrease HIF-1α, VEGF-A, TGF-β1, COX2, and ANG2/ANG1), reduce the formation of ROS, and reduce the risk of uterine neoplasticity. The NSAID-metal complex [Zn(neo)(nif)2] shows an ability to intercalate into ZNF3-7 target DNA sequence at a higher rate, which could explain its effect on genes regulated by this transcription factor. In addition, [Zn(neo)(nif)2] affects ROS production and Ca2+ level, possibly pointing to mitochondrial dysfunction as a potential cause for the described apoptosis.
Collapse
Affiliation(s)
- Ivana Špaková
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Lukáš Smolko
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Gabriela Sabolová
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Zuzana Badovská
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Katarína Kalinová
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biohemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, T8010, Graz, Austria
| | - Corina Madreiter-Sokolowski
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biohemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, T8010, Graz, Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biohemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, T8010, Graz, Austria
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Janka Vašková
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, P. J. Šafárik University in Košice, Trieda SNP 1, 04011, Košice, Slovakia.
| |
Collapse
|
2
|
Tkaczenko H, Kurhaluk N. Antioxidant-Rich Functional Foods and Exercise: Unlocking Metabolic Health Through Nrf2 and Related Pathways. Int J Mol Sci 2025; 26:1098. [PMID: 39940866 PMCID: PMC11817741 DOI: 10.3390/ijms26031098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
This article reviews the synergistic effects of antioxidant-enriched functional foods and exercise in improving metabolic health, focusing on the underlying molecular mechanisms. The review incorporates evidence from PubMed, SCOPUS, Web of Science, PsycINFO, and reference lists of relevant reviews up to 20 December 2024, highlighting the central role of the Nrf2 pathway. As a critical regulator of oxidative stress and metabolic adaptation, Nrf2 mediates the benefits of these interventions. This article presents an innovative approach to understanding the role of Nrf2 in the regulation of oxidative stress and inflammation, highlighting its potential in the prevention and treatment of various diseases, including cancer, neurodegenerative disorders, cardiovascular and pulmonary diseases, diabetes, inflammatory conditions, ageing, and infections such as COVID-19. The novelty of this study is to investigate the synergistic effects of bioactive compounds found in functional foods (such as polyphenols, flavonoids, and vitamins) and exercise-induced oxidative stress on the activation of the Nrf2 pathway. This combined approach reveals their potential to improve insulin sensitivity and lipid metabolism and reduce inflammation, offering a promising strategy for the management of chronic diseases. However, there are significant gaps in current research, particularly regarding the molecular mechanisms underlying the interaction between diet, physical activity, and Nrf2 activation, as well as their long-term effects in different populations, including those with chronic diseases. In addition, the interactions between Nrf2 and other critical signalling pathways, including AMPK, NF-κB, and PI3K/Akt, and their collective contributions to metabolic health are explored. Furthermore, novel biomarkers are presented to assess the impact of these synergistic strategies, such as the NAD+/NADH ratio, the GSH ratio, and markers of mitochondrial health. The findings provide valuable insights into how the integration of an antioxidant-rich diet and regular exercise can improve metabolic health by activating Nrf2 and related molecular pathways and represent promising strategies for the prevention and treatment of metabolic disorders. Further studies are needed to fully understand the therapeutic potential of these interventions in diseases related to oxidative stress, such as cardiovascular disease, neurodegenerative disease, diabetes, and cancer.
Collapse
Affiliation(s)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| |
Collapse
|
3
|
Ruhee RT, Suzuki K. The Immunomodulatory Effects of Sulforaphane in Exercise-Induced Inflammation and Oxidative Stress: A Prospective Nutraceutical. Int J Mol Sci 2024; 25:1790. [PMID: 38339067 PMCID: PMC10855658 DOI: 10.3390/ijms25031790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Sulforaphane (SFN) is a promising molecule for developing phytopharmaceuticals due to its potential antioxidative and anti-inflammatory effects. A plethora of research conducted in vivo and in vitro reported the beneficial effects of SFN intervention and the underlying cellular mechanisms. Since SFN is a newly identified nutraceutical in sports nutrition, only some human studies have been conducted to reflect the effects of SFN intervention in exercise-induced inflammation and oxidative stress. In this review, we briefly discussed the effects of SFN on exercise-induced inflammation and oxidative stress. We discussed human and animal studies that are related to exercise intervention and mentioned the underlying cellular signaling mechanisms. Since SFN could be used as a potential therapeutic agent, we mentioned briefly its synergistic attributes with other potential nutraceuticals that are associated with acute and chronic inflammatory conditions. Given its health-promoting effects, SFN could be a prospective nutraceutical at the forefront of sports nutrition.
Collapse
Affiliation(s)
- Ruheea Taskin Ruhee
- Research Fellow of Japan Society for the Promotion of Sciences, Tokyo 102-0083, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
4
|
Flockhart M, Nilsson LC, Tillqvist EN, Vinge F, Millbert F, Lännerström J, Nilsson PH, Samyn D, Apró W, Sundqvist ML, Larsen FJ. Glucosinolate-rich broccoli sprouts protect against oxidative stress and improve adaptations to intense exercise training. Redox Biol 2023; 67:102873. [PMID: 37688976 PMCID: PMC10493800 DOI: 10.1016/j.redox.2023.102873] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Oxidative stress plays a vital role for the adaptive responses to physical training. However, excessive oxidative stress can precipitate cellular damage, necessitating protective mechanisms to mitigate this effect. Glucosinolates, found predominantly in cruciferous vegetables, can be converted into isothiocyanates, known for their antioxidative properties. These compounds activate crucial antioxidant defence pathways and support mitochondrial function and protein integrity under oxidative stress, in both Nrf2-dependent and independent manners. We here administered glucosinolate-rich broccoli sprouts (GRS), in a randomized double-blinded cross-over fashion to 9 healthy subjects in combination with daily intense exercise training for 7 days. We found that exercise in combination with GRS significantly decreased the levels of carbonylated proteins in skeletal muscle and the release of myeloperoxidase into blood. Moreover, it lowered lactate accumulation during submaximal exercise, and attenuated the severe nocturnal hypoglycaemic episodes seen during the placebo condition. Furthermore, GRS in combination with exercise improved physical performance, which was unchanged in the placebo condition.
Collapse
Affiliation(s)
- M Flockhart
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
| | - L C Nilsson
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - E N Tillqvist
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F Vinge
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F Millbert
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - J Lännerström
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - P H Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden; Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - D Samyn
- Department of Laboratory Medicine, Clinical Chemistry, Örebro University Hospital, Örebro, Sweden; School of Medicine, Faculty of Medicine, Örebro University, Örebro, Sweden
| | - W Apró
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - M L Sundqvist
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - F J Larsen
- Department of Physiology, Nutrition and Biomechanics, Åstrand Laboratory, The Swedish School of Sport and Health Sciences, Stockholm, Sweden.
| |
Collapse
|
5
|
Drozdovska S, Zanou N, Lavier J, Mazzolai L, Millet GP, Pellegrin M. Moderate Effects of Hypoxic Training at Low and Supramaximal Intensities on Skeletal Muscle Metabolic Gene Expression in Mice. Metabolites 2023; 13:1103. [PMID: 37887428 PMCID: PMC10609052 DOI: 10.3390/metabo13101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The muscle molecular adaptations to different exercise intensities in combination with hypoxia are not well understood. This study investigated the effect of low- and supramaximal-intensity hypoxic training on muscle metabolic gene expression in mice. C57BL/6 mice were divided into two groups: sedentary and training. Training consisted of 4 weeks at low or supramaximal intensity, either in normoxia or hypoxia (FiO2 = 0.13). The expression levels of genes involved in the hypoxia signaling pathway (Hif1a and Vegfa), the metabolism of glucose (Gys1, Glut4, Hk2, Pfk, and Pkm1), lactate (Ldha, Mct1, Mct4, Pdh, and Pdk4) and lipid (Cd36, Fabp3, Ucp2, Hsl, and Mcad), and mitochondrial energy metabolism and biogenesis (mtNd1, mtNd6, CytC, CytB, Pgc1a, Pgc1β, Nrf1, Tfam, and Cs) were determined in the gastrocnemius muscle. No physical performance improvement was observed between groups. In normoxia, supramaximal intensity training caused upregulation of major genes involved in the transport of glucose and lactate, fatty acid oxidation, and mitochondrial biogenesis, while low intensity training had a minor effect. The exposure to hypoxia changed the expression of some genes in the sedentary mice but had a moderate effect in trained mice compared to respective normoxic mice. In hypoxic groups, low-intensity training increased the mRNA levels of Mcad and Cs, while supramaximal intensity training decreased the mRNA levels of Mct1 and Mct4. The results indicate that hypoxic training, regardless of exercise intensity, has a moderate effect on muscle metabolic gene expression in healthy mice.
Collapse
Affiliation(s)
- Svitlana Drozdovska
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (S.D.); (N.Z.); (J.L.)
- Biomedical Disciplines Department, Health, Physical Education and Tourism Faculty, National University of Ukraine on Physical Education and Sport, 03150 Kyiv, Ukraine
| | - Nadège Zanou
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (S.D.); (N.Z.); (J.L.)
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Jessica Lavier
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (S.D.); (N.Z.); (J.L.)
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland;
| | - Lucia Mazzolai
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland;
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (S.D.); (N.Z.); (J.L.)
| | - Maxime Pellegrin
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; (S.D.); (N.Z.); (J.L.)
- Angiology Division, Heart and Vessel Department, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland;
| |
Collapse
|
6
|
Wang Y, Xiang Y, Wang R, Li X, Wang J, Yu S, Zhang Y. Sulforaphane enhances Nrf2-mediated antioxidant responses of skeletal muscle induced by exhaustive exercise in HIIT mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|