1
|
Abughazaleh N, Boldt K, Rios JL, Mattiello SM, Collins KH, Seerattan RA, Herzog W. Aerobic and Resistance Training Attenuate Differently Knee Joint Damage Caused by a High-Fat-High-Sucrose Diet in a Rat Model. Cartilage 2024; 15:453-460. [PMID: 37655800 PMCID: PMC11526155 DOI: 10.1177/19476035231193090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVE Obesity and associated low-level local systemic inflammation have been linked to an increased rate of developing knee osteoarthritis (OA). Aerobic exercise has been shown to protect the knee from obesity-induced joint damage. The aims of this study were to determine (1) if resistance training provides beneficial metabolic effects similar to those previously observed with aerobic training in rats consuming a high-fat/high-sucrose (HFS) diet and (2) if these metabolic effects mitigate knee OA in a diet-induced obesity model in rats. DESIGN Twelve-week-old Sprague-Dawley rats were randomized into 4 groups: (1) a group fed an HFS diet subjected to aerobic exercise (HFS+Aer), (2) a group fed an HFS diet subjected to resistance exercise (HFS+Res), (3) a group fed an HFS diet with no exercise (HFS+Sed), and (4) a chow-fed sedentary control group (Chow+Sed). HFS+Sed animals were heavier and had greater body fat, higher levels of triglycerides and total cholesterol, and more joint damage than Chow+Sed animals. RESULTS The HFS+Res group had higher body mass and body fat than Chow+Sed animals and higher OA scores than animals from the HFS+Aer group. Severe bone lesions were observed in the HFS+Sed and Chow+Sed animals at age 24 weeks, but not in the HFS+Res and HFS+Aer group animals. CONCLOSION In summary, aerobic training provided better protection against knee joint OA than resistance training in this rat model of HFS-diet-induced obesity. Exposing rats to exercise, either aerobic or resistance training, had a protective effect against the severe bone lesions observed in the nonexercised rats.
Collapse
Affiliation(s)
- Nada Abughazaleh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Kevin Boldt
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Jaqueline Lourdes Rios
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Kelsey H. Collins
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ruth-Anne Seerattan
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
2
|
Zeng Q, Liao W, Fang W, Liu S, Duan C, Dai Y, Wei C. Clinical effect of aerobic exercise training in chronic obstructive pulmonary disease: A retrospective study. Medicine (Baltimore) 2023; 102:e35573. [PMID: 37861566 PMCID: PMC10589605 DOI: 10.1097/md.0000000000035573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Aerobic exercise training is a kind of pulmonary rehabilitation for lung diseases. This was a retrospective study to assess the efficacy of aerobic exercise training in chronic obstructive pulmonary disease (COPD) at a stable stage. A total of one hundred and fifty-six stable COPD patients who had accepted self-education only or self-education combined with an aerobic exercise training between January 2017 to January 2019 were reviewed retrospectively. A total of 79 patients who had received self-education combined with an aerobic exercise training schedule comprised the aerobic exercise training group (AET group) and 77 patients who had received self-education only were regarded as the education group (EDU group). The acute incidence rate in AET group was 7.6% better than that in EDU group 20.7% (P < .05). The AET group patients expressed higher levels of 6 minutes walking distance (6MWD) (P < .05) and better evaluations of both lung function (P < .05) and T lymphocyte immune response (P < .05), as well as significantly decreased chronic obstructive pulmonary disease assessment test (CAT) scores and modified British medical research council (mMRC) grades (P < .05). Patients in EDU group did not report any changes in any of these characteristics. The aerobic exercise training intervention contributed to an increasing in 6MWD and decrease in CAT scores and mMRC grades, as well as improving the T lymphocyte immune response in stable COPD patients.
Collapse
Affiliation(s)
- Qigang Zeng
- Guangdong Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong Province, China
| | - Wangwang Liao
- Guangzhou University of Chinese Medicine, Guangdong Province, China
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangdong Province, China
| | - Wentao Fang
- Guangzhou University of Chinese Medicine, Guangdong Province, China
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangdong Province, China
| | - Shuling Liu
- Guangzhou University of Chinese Medicine, Guangdong Province, China
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, Guangdong Province, China
| | - Chenxia Duan
- Guangdong Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong Province, China
| | - Yong Dai
- Guangdong Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong Province, China
| | - Chenggong Wei
- Guangdong Hospital of Integrated Traditional Chinese and Western Medicine, Guangdong Province, China
| |
Collapse
|
3
|
Duan C, Yin C, Ma Z, Li F, Zhang F, Yang Q, Lin M, Feng S, Zhu C, Wang L, Zhu X, Gao P, Jiang Q, Shu G, Wang S. trans 10, cis 12, but Not cis 9, trans 11 Conjugated Linoleic Acid Isomer Enhances Exercise Endurance by Increasing Oxidative Skeletal Muscle Fiber Type via Toll-like Receptor 4 Signaling in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15636-15648. [PMID: 34928153 DOI: 10.1021/acs.jafc.1c06280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conjugated linoleic acid (CLA) has been implicated in regulating muscle fiber. However, which isomer elicits this effect and the underlying mechanisms remain unclear. Here, male C57BL6/J mice and C2C12 cells were treated with two CLA isomers, and the exercise endurance, skeletal muscle fiber type, and involvement of Toll-like receptor 4 (TLR4) signaling were assessed. The results demonstrated that dietary t10, c12, but not c9, t11-CLA isomer enhanced exercise endurance of mice (from 115.88 ± 11.21 to 130.00 ± 15.84 min, P < 0.05) and promoted the formation of oxidative muscle fiber type of gastrocnemius muscle (from 0.15 ± 0.04 to 0.24 ± 0.05, P < 0.05). Consistently, t10, c12-CLA isomer increased the mRNA expression of oxidative muscle fiber type in C2C12 myotubes (from 1.00 ± 0.08 to 2.65 ± 1.77, P < 0.05). In addition, t10, c12-CLA isomer increased TLR4 signaling expression in skeletal muscle and C2C12 myotubes. More importantly, knockdown of TLR4 eliminated the t10, c12-CLA isomer-induced enhancement of exercise endurance in mice and elevation of oxidative muscle fiber type in C2C12 myotubes and gastrocnemius muscle. Together, these findings showed that t10, c12, but not c9, t11-CLA isomer enhances exercise endurance by increasing oxidative skeletal muscle fiber type via TLR4 signaling.
Collapse
Affiliation(s)
- Chen Duan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Cong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zewei Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Fenglin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qiang Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Mingfa Lin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Shengchun Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Canjun Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Xiaotong Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ping Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Gang Shu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Songbo Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
- National Engineering Research Center for Breeding Swine Industry and UBT Lipid Suite Functional Fatty Acids Research Center, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
4
|
Boldt K, Mattiello S, Joumaa V, Turnbull J, Fedak PWM, Herzog W. Consumption of a high-fat-high-sucrose diet partly diminishes mechanical and structural adaptations of cardiac muscle following resistance training. Phys Act Nutr 2021; 25:8-14. [PMID: 34315201 PMCID: PMC8342188 DOI: 10.20463/pan.2021.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022] Open
Abstract
[Purpose] The purpose of this study was to investigate the effects of a high-fat high-sucrose (HFHS) diet on previously reported adaptations of cardiac morphological and contractile properties to resistance training. [Methods] Twelve-week-old rats participated in 12-weeks of resistance exercise training and consumed an HFHS diet. Echocardiography and skinned cardiac muscle fiber bundle testing were performed to determine the structural and mechanical adaptations. [Results] Compared to chow-fed sedentary animals, both HFHS- and chow-fed resistance-trained animals had thicker left ventricular walls. Isolated trabecular fiber bundles from chow-fed resistance-trained animals had greater force output, shortening velocities, and calcium sensitivities than those of chow-fed sedentary controls. However, trabeculae from the HFHS resistance-trained animals had greater force output but no change in unloaded shortening velocity or calcium sensitivity than those of the chow-fed sedentary group animals. [Conclusion] Resistance exercise training led to positive structural and mechanical adaptations of the heart, which were partly offset by the HFHS diet.
Collapse
Affiliation(s)
- Kevin Boldt
- Human Performance Laboratory, University of Calgary, Calgary, Canada
| | - Stela Mattiello
- Department of Physical Therapy, Center of Biological and Health Sciences, Federal University of São Carlos, São Carlos, Brazil
| | - Venus Joumaa
- Human Performance Laboratory, University of Calgary, Calgary, Canada
| | - Jeannine Turnbull
- Health Centre, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Paul W M Fedak
- Health Centre, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, Canada.,Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|