1
|
Trybulski R, Żebrowska A, Bichowska-Pawęska M, Kużdżał A, Ryszkiel I, Silva RM, Muracki J, Kawczyński A. The Effects of Combined Contrast Heat Cold Pressure Therapy on Post-Exercise Muscle Recovery in MMA Fighters: A Randomized Controlled Trial. J Hum Kinet 2024; 94:127-146. [PMID: 39563772 PMCID: PMC11571465 DOI: 10.5114/jhk/190220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 11/21/2024] Open
Abstract
The purpose of this study was to evaluate the effects of contrast heat and cold pressure therapy (CHCP) on muscle tone, elasticity, stiffness, perfusion unit, and muscle fatigue indices after plyometric training consisting of five sets of jumping on a 50-cm high box until exhaustion. A prospective, randomized, controlled single-blind study design was used. Twenty professional MMA fighters were included in the study. The experimental group (n = 10) was subjected to the CHCP protocol (eGR), while the control group (cGR) (n = 10) was subjected to sham therapy. Both protocols consisted of three CHCP sessions performed immediately after plyometric exercise, 24 and 48 h afterwards. Measurements were taken at the following time points: 1) at rest; 2) 1 min post-exercise; 3) 1 min post-CHCP therapy; 4) 24 h post-CHCP therapy; 5) 48 h post-CHCP therapy. The results of the eGR compared to the cGR showed significantly higher perfusion at time point 5 (p < 0.001), higher muscle tone at time points 1, and 3-5 (p < 0.001 for all), higher stiffness at time points 1, 3-5 (p < 0.001 for all) and a higher pain threshold at time points 1 and 5 (p < 0.001 for all). This study suggests a positive effect of CHCP therapy on muscle biomechanics, the pain threshold, and tissue perfusion, which may contribute to increasing the effectiveness of post-exercise muscle recovery in MMA athletes.
Collapse
Affiliation(s)
- Robert Trybulski
- Medical Department Wojciech Korfanty, Upper Silesian Academy, Katowice, Poland
- Provita Żory Medical Center, Żory, Poland
| | - Aleksandra Żebrowska
- Department of Physiological and Medical Sciences, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
- Institute of Healthy Living, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Marta Bichowska-Pawęska
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Adrian Kużdżał
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, Rzeszów, Poland
| | - Ireneusz Ryszkiel
- Department of Descriptive and Topographic Anatomy, Medical University of Silesia, Katowice, Poland
| | - Rui Miguel Silva
- Research Center in Sports Performance, Recreation, Innovation and Technology (SPRINT), Melgaço, Portugal
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Jarosław Muracki
- Institute of Physical Culture Sciences, Department of Physical Culture and Health, University of Szczecin, Szczecin, Poland
| | - Adam Kawczyński
- Department of Paralympics Sports, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| |
Collapse
|
2
|
Trybulski R, Kużdżał A, Stanula A, Muracki J, Kawczyński A, Kuczmik W, Wang HK. Acute effects of cold, heat and contrast pressure therapy on forearm muscles regeneration in combat sports athletes: a randomized clinical trial. Sci Rep 2024; 14:22410. [PMID: 39333728 PMCID: PMC11437117 DOI: 10.1038/s41598-024-72412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Due to the specific loads that occur in combat sports athletes' forearm muscles, we decided to compare the immediate effect of monotherapy with the use of compressive heat (HT), cold (CT), and alternating therapy (HCT) in terms of eliminating muscle tension, improving muscle elasticity and tissue perfusion and forearm muscle strength. This is a single-blind, randomized, experimental clinical trial. Group allocation was performed using simple 1:1 sequence randomization using the website randomizer.org. The study involved 40 40 combat sports athletes divided into four groups and four therapeutic sessions lasting 20 min. (1) Heat compression therapy session (HT, n = 10) (2) (CT, n = 10), (3) alternating (HCT, n = 10), and sham, control (ShT, n = 10). All participants had measurements of tissue perfusion (PU, [non-reference units]), muscle tension (T-[Hz]), elasticity (E-[arb- relative arbitrary unit]), and maximum isometric force (Fmax [kgf]) of the dominant hand at rest (Rest) after the muscle fatigue protocol (PostFat.5 min), after therapy (PostTh.5 min) and 24 h after therapy (PostTh.24 h). A two-way ANOVA with repeated measures: Group (ColdT, HeatT, ContrstT, ControlT) × Time (Rest, PostFat.5 min, PostTh.5 min, Post.24 h) was used to examine the changes in examined variables. Post-hoc tests with Bonferroni correction and ± 95% confidence intervals (CI) for absolute differences (△) were used to analyze the pairwise comparisons when a significant main effect or interaction was found. The ANOVA for PU, T, E, and Fmax revealed statistically significant interactions of Group by Time factors (p < 0.0001), as well as main effects for the Group factors (p < 0.0001; except for Fmax). In the PostTh.5 min. Period, significantly (p < 0.001) higher PU values were recorded in the HT (19.45 ± 0.91) and HCT (18.71 ± 0.67) groups compared to the ShT (9.79 ± 0.35) group (△ = 9.66 [8.75; 10.57 CI] > MDC(0.73), and △ = 8.92 [8.01; 9.83 CI] > MDC(0.73), respectively). Also, significantly (p < 0.001) lower values were recorded in the CT (3.69 ± 0.93) compared to the ShT (9.79 ± 0.35) group △ = 6.1 [5.19; 7.01 CI] > MDC(0.73). For muscle tone in the PostTh.5 m period significantly (p < 0.001) higher values were observed in the CT (20.08 ± 0.19 Hz) group compared to the HT (18.61 ± 0.21 Hz), HCT (18.95 ± 0.41 Hz) and ShT (19.28 ± 0.33 Hz) groups (respectively: △ = 1.47 [1.11; 1.83 CI] > MDC(0.845); △ = 1.13 [0.77; 1.49 CI] > MDC(0.845), and △ = 0.8 [0.44; 1.16 CI], < MDC(0.845)). The highest elasticity value in the PostTh.5 m period were observed in the CT (1.14 ± 0.07) group, and it was significantly higher than the values observed in the HT (0.97 ± 0.03, △ = 0.18 [0.11; 0.24 CI] > MDC(0.094), p < 0.001), HCT (0.90 ± 0.04, △ = 0.24 [0.17; 0.31 CI] > MDC(0.094), p < 0.001) and ShT (1.05 ± 0.07, △ = 0.094 [0.03; 0.16 CI] = MDC(0.094), p = 0.003) groups. For Fmax, there were no statistically significant differences between groups at any level of measurement. The results of the influence of the forearm of all three therapy forms on the muscles' biomechanical parameters confirmed their effectiveness. However, the effect size of alternating contrast therapy cannot be confirmed, especially in the PostTh24h period. Statistically significant changes were observed in favor of this therapy in PU and E measurements immediately after therapy (PostTh.5 min). Further research on contrast therapy is necessary.
Collapse
Affiliation(s)
- Robert Trybulski
- Provita Żory Medical Center, Żory, Poland.
- Department of Medical Sciences, The Wojciech Korfanty Upper Silesian Academy, Katowice, Poland.
| | - Adrian Kużdżał
- College of Medical Sciences, Institute of Health Sciences, University of Rzeszów, Rzeszów, Poland
| | - Arkadiusz Stanula
- Laboratory of Sport Performance Analysis, Institute of Sport Sciences, Academy of Physical Education in Katowice, Katowice, Poland
| | - Jarosław Muracki
- Institute of Physical Culture Sciences, Department of Physical Culture and Health, University of Szczecin, Szczecin, Poland
| | - Adam Kawczyński
- Department of Paralympic Sport, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| | - Wacław Kuczmik
- Department and Clinic of General Surgery, Vascular Surgery, Angiology and Phlebology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Hsing-Kuo Wang
- School and Graduate Institute of Physical Therapy, National Taiwan University, Taipei, Taiwan
- Center of Physical Therapy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Seifert J, Shah AS, Harezlak J, Rowson S, Mihalik JP, Riggen L, Duma S, Brooks A, Cameron KL, Giza CC, Goldman J, Guskiewicz KM, Houston MN, Jackson JC, McGinty G, Pasquina P, Broglio SP, McAllister TW, McCrea MA, Stemper BD. Time Delta Head Impact Frequency: An Analysis on Head Impact Exposure in the Lead Up to a Concussion: Findings from the NCAA-DOD Care Consortium. Ann Biomed Eng 2022; 50:1473-1487. [PMID: 35933459 PMCID: PMC9652163 DOI: 10.1007/s10439-022-03032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Sport-related concussions can result from a single high magnitude impact that generates concussive symptoms, repeated subconcussive head impacts aggregating to generate concussive symptoms, or a combined effect from the two mechanisms. The array of symptoms produced by these mechanisms may be clinically interpreted as a sport-related concussion. It was hypothesized that head impact exposure resulting in concussion is influenced by severity, total number, and frequency of subconcussive head impacts. The influence of total number and magnitude of impacts was previously explored, but frequency was investigated to a lesser degree. In this analysis, head impact frequency was investigated over a new metric called ‘time delta’, the time difference from the first recorded head impact of the day until the concussive impact. Four exposure metrics were analyzed over the time delta to determine whether frequency of head impact exposure was greater for athletes on their concussion date relative to other dates of contact participation. Those metrics included head impact frequency, head impact accrual rate, risk weighted exposure (RWE), and RWE accrual rate. Athletes experienced an elevated median number of impacts, RWE, and RWE accrual rate over the time delta on their concussion date compared to non-injury sessions. This finding suggests elevated frequency of head impact exposure on the concussion date compared to other dates that may precipitate the onset of concussion.
Collapse
Affiliation(s)
- Jack Seifert
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Labs, Clement J. Zablocki Veterans Affairs Medical Center, Research 151, 5000 W. National Ave., Milwaukee, WI, 53295, USA
| | - Alok S Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Labs, Clement J. Zablocki Veterans Affairs Medical Center, Research 151, 5000 W. National Ave., Milwaukee, WI, 53295, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Steven Rowson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Jason P Mihalik
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Larry Riggen
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Stefan Duma
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Alison Brooks
- Department of Orthopedics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Kenneth L Cameron
- John A. Feagin Jr. Sports Medicine Fellowship, Keller Army Hospital, United States Military Academy, West Point, NY, USA
| | - Christopher C Giza
- Departments of Neurosurgery and Pediatrics, UCLA Steve Tisch BrainSPORT Program, David Geffem School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Joshua Goldman
- Departments of Neurosurgery and Pediatrics, UCLA Steve Tisch BrainSPORT Program, David Geffem School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan N Houston
- John A. Feagin Jr. Sports Medicine Fellowship, Keller Army Hospital, United States Military Academy, West Point, NY, USA
| | - Jonathan C Jackson
- Department of Sports Medicine, United States Air Force Academy, Colorado Springs, CO, USA
| | - Gerald McGinty
- Department of Sports Medicine, United States Air Force Academy, Colorado Springs, CO, USA
| | - Paul Pasquina
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Labs, Clement J. Zablocki Veterans Affairs Medical Center, Research 151, 5000 W. National Ave., Milwaukee, WI, 53295, USA
| | - Brian D Stemper
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA. .,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA. .,Neuroscience Research Labs, Clement J. Zablocki Veterans Affairs Medical Center, Research 151, 5000 W. National Ave., Milwaukee, WI, 53295, USA.
| |
Collapse
|