1
|
Shirazi A, Brody AL, Soltani M, Lang AJ. Recovery Horizons: Nature-Based Activities as Adjunctive Treatments for Co-Occurring Post-Traumatic Stress Disorder and Substance Use Disorders. Am J Lifestyle Med 2024:15598276241300475. [PMID: 39563987 PMCID: PMC11571177 DOI: 10.1177/15598276241300475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Posttraumatic stress disorder (PTSD) and substance use disorders (SUDs) frequently co-occur, and individuals with co-occurring PTSD and SUD often experience more complex treatment challenges and poorer outcomes compared to those with either condition alone. Integrative treatment approaches that simultaneously address both PTSD and SUD are considered the most effective and include both pharmacological and non-pharmacological strategies. In recent years, complementary interventions have garnered increased attention due to their broad appeal and potential therapeutic benefits in enhancing existing treatments for PTSD and SUD. This review explores the existing literature on the use of nature-based activities, such as hiking, camping, sailing, and surfing in treating individuals with co-occurring PTSD and SUD. Nature-based activities offer promising adjunctive benefits, including the reduction of PTSD symptoms and craving levels. While evidence supports the therapeutic value of nature-based activities, current research remains limited. Further research is needed to better understand their therapeutic role and to refine their implementation in clinical practice.
Collapse
Affiliation(s)
- Anaheed Shirazi
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA (AS, ALB, MS, AJL)
- VA San Diego Center of Excellence for Stress and Mental Health, San Diego, CA, USA (AS, AJL)
| | - Arthur L Brody
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA (AS, ALB, MS, AJL)
- VA San Diego Healthcare System, San Diego, CA, USA (ALB, MS)
| | - Maryam Soltani
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA (AS, ALB, MS, AJL)
- VA San Diego Healthcare System, San Diego, CA, USA (ALB, MS)
| | - Ariel J Lang
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA (AS, ALB, MS, AJL)
- VA San Diego Center of Excellence for Stress and Mental Health, San Diego, CA, USA (AS, AJL)
| |
Collapse
|
2
|
Abstract
This paper is the forty-fifth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2022 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
3
|
Wang X, Wang T, Fan X, Zhang Z, Wang Y, Li Z. A Molecular Toolbox of Positron Emission Tomography Tracers for General Anesthesia Mechanism Research. J Med Chem 2023; 66:6463-6497. [PMID: 37145921 DOI: 10.1021/acs.jmedchem.2c01965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With appropriate radiotracers, positron emission tomography (PET) allows direct or indirect monitoring of the spatial and temporal distribution of anesthetics, neurotransmitters, and biomarkers, making it an indispensable tool for studying the general anesthesia mechanism. In this Perspective, PET tracers that have been recruited in general anesthesia research are introduced in the following order: 1) 11C/18F-labeled anesthetics, i.e., PET tracers made from inhaled and intravenous anesthetics; 2) PET tracers targeting anesthesia-related receptors, e.g., neurotransmitters and voltage-gated ion channels; and 3) PET tracers for studying anesthesia-related neurophysiological effects and neurotoxicity. The radiosynthesis, pharmacodynamics, and pharmacokinetics of the above PET tracers are mainly discussed to provide a practical molecular toolbox for radiochemists, anesthesiologists, and those who are interested in general anesthesia.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Tao Wang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaowei Fan
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zijing Li
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
4
|
Crum J, Ronca F, Herbert G, Funk S, Carmona E, Hakim U, Jones I, Hamer M, Hirsch J, Hamilton A, Tachtsidis I, Burgess PW. Decreased Exercise-Induced Changes in Prefrontal Cortex Hemodynamics Are Associated With Depressive Symptoms. FRONTIERS IN NEUROERGONOMICS 2022; 3:806485. [PMID: 38235451 PMCID: PMC10790946 DOI: 10.3389/fnrgo.2022.806485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/27/2022] [Indexed: 01/19/2024]
Abstract
People with a depressed mood tend to perform poorly on executive function tasks, which require much of the prefrontal cortex (PFC), an area of the brain which has also been shown to be hypo-active in this population. Recent research has suggested that these aspects of cognition might be improved through physical activity and cognitive training. However, whether the acute effects of exercise on PFC activation during executive function tasks vary with depressive symptoms remains unclear. To investigate these effects, 106 participants were given a cardiopulmonary exercise test (CPET) and were administered a set of executive function tests directly before and after the CPET assessment. The composite effects of exercise on the PFC (all experimental blocks) showed bilateral activation changes in dorsolateral (BA46/9) and ventrolateral (BA44/45) PFC, with the greatest changes occurring in rostral PFC (BA10). The effects observed in right ventrolateral PFC varied depending on level of depressive symptoms (13% variance explained); the changes in activation were less for higher levels. There was also a positive relationship between CPET scores (VO2peak) and right rostral PFC, in that greater activation changes in right BA10 were predictive of higher levels of aerobic fitness (9% variance explained). Since acute exercise ipsilaterally affected this PFC subregion and the inferior frontal gyrus during executive function tasks, this suggests physical activity might benefit the executive functions these subregions support. And because physical fitness and depressive symptoms explained some degree of cerebral upregulation to these subregions, physical activity might more specifically facilitate the engagement of executive functions that are typically associated with hypoactivation in depressed populations. Future research might investigate this possibility in clinical populations, particularly the neural effects of physical activity used in combination with mental health interventions.
Collapse
Affiliation(s)
- James Crum
- Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Flaminia Ronca
- Institute of Sport Exercise and Health, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - George Herbert
- Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Sabina Funk
- Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Estela Carmona
- Institute of Sport Exercise and Health, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Uzair Hakim
- Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Sciences, University College London, London, United Kingdom
| | - Isla Jones
- Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Mark Hamer
- Institute of Sport Exercise and Health, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - Joy Hirsch
- Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Sciences, University College London, London, United Kingdom
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT, United States
- Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, United States
- Department of Neuroscience, School of Medicine, Yale University, New Haven, CT, United States
| | - Antonia Hamilton
- Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Sciences, University College London, London, United Kingdom
| | - Paul W. Burgess
- Institute of Cognitive Neuroscience, Faculty of Brain Sciences, University College London, London, United Kingdom
| |
Collapse
|