1
|
Wang Y, Liu H, Wang S, Yang B, Sun D, Han S. Feasibility study of core training in knee injury recovery. Turk J Phys Med Rehabil 2025; 71:37-47. [PMID: 40270628 PMCID: PMC12012924 DOI: 10.5606/tftrd.2024.12985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/10/2024] [Indexed: 04/25/2025] Open
Abstract
Objectives This study aims to investigate the effects of core and routine training on joint function, anterior tibia translation and balance in patients with knee joint injury. Patients and methods Between March 2021 and March 2022, a total of 70 patients (49 males, 21 females; mean age: 31.2±5.3 years; range, 17 to 44 years) with knee ligament injury or meniscus injury were included. The patients were divided into core training group (n=35) and conventional training group (n=35) by matching method. During the recovery process, the regular training group performed routine training, whereas the core training group engaged in core training. Both groups were trained for a total of eight weeks. After training, the Visual Analog Scale (VAS), knee Lysholm score, KT-2000 tibial anterior translation, and the star excursion balance test (SEBT) results were collected. Results The mean VAS scores in both groups were decreased from baseline values. The mean Lysholm score increased from baseline data; the degree of tibial anterior translation decreased compared with baseline data (p<0.05). The mean SEBT scores showed significant improvement over baseline data. In contrast with the routine training group, the mean VAS score of core training was lower and the total score of Lysholm was higher (p<0.05). When bending the knee at 90°, the mean tibial anterior translation was 3.87±1.23 mm in the core training group, significantly lower than in the regular training group (p<0.05). The SEBT results showed that, after eight weeks of training, healthy and injured legs in core training group exceeded those of the regular training group in the farthest distance (p<0.05). Conclusion Our study results indicate that core training is more successful than regular training in reducing pain, and it can ameliorate the dynamic balance stability of patients with knee injury.
Collapse
Affiliation(s)
- Yue Wang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Hui Liu
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Shuyuan Wang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Bo Yang
- Department of Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Di Sun
- Department of Orthopedics, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Shuangyang Han
- Department of Orthopedics, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| |
Collapse
|
2
|
Franchi MV, Candia J, Sarto F, Sirago G, Valli G, Paganini M, Hartnell L, Giacomello E, Toniolo L, Monti E, Nogara L, Moro T, Paoli A, Murgia M, Brocca L, Pellegrino MA, Grassi B, Bottinelli R, De Vito G, Ferrucci L, Narici MV. Previous short-term disuse dictates muscle gene expression and physiological adaptations to subsequent resistance exercise. J Physiol 2025. [PMID: 39792484 DOI: 10.1113/jp287003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading. Eleven males (22.09 ± 2.91 years) underwent 10 days of unilateral lower limb suspension (ULLS) followed by 21 days of knee extensor RT (three times/week). Data collection occurred at Baseline (LS0), after ULLS (LS10) and at active recovery (AR21). Knee extensor maximum voluntary contraction (MVC) was evaluated. Quadriceps volume was estimated by ultrasonography. Muscle fibre cross-sectional area, fibre type distribution, glycogen content and succinate dehydrogenase (SDH) activity were measured from vastus lateralis biopsies. Mitochondrial-related proteins were quantified by western blot and transcriptional responses were assessed by RNA sequencing. Following ULLS, quadriceps volume and MVC decreased significantly (3.7%, P < 0.05; 29.3%, P < 0.001). At AR21 (vs. LS10), MVC was fully restored (42%) and quadriceps volume increased markedly (18.6%, P < 0.001). Glycogen content and whole-body water increased at AR21 (14%, P < 0.001; 3.1%, P < 0.05). We observed a marked increase in fibre type I at AR21 (38%, P < 0.05). SDH immunoreactivity increased significantly after exercise (20%, P < 0.001). Mitochondrial fusion (MFN1, MFN2 and OPA1) and fission (DRP1) proteins were markedly increased by RT, and the most differentially expressed genes belonged to oxidative phosphorylation pathways. In contrast with what is usually observed after RT, oxidative metabolism, slow fibre type and mitochondrial dynamics were enhanced beyond expected. We propose that prior exposure to short-term muscle unloading may drive the nature of molecular adaptations to subsequent RT. KEY POINTS: Short-term unloading is often experienced during recovery from injuries and hospitalisation, leading to loss of muscle mass and strength. Although exercise can be beneficial in mitigating/reversing such alterations during disuse, only a few studies have focused on the effects of exercise following muscle unloading. With an integrative physiological approach, we aimed to elucidate the basic mechanisms of muscle function recovery in response to 21 days of resistance exercise that followed 10 days of unilateral lower limb suspension (ULLS), assessing whether the mechanisms underlying recovery are defined by a specific reversal of those that occurred during disuse. Resistance training was successful in recovering functional and structural muscle properties after 10 days of ULLS, but in contrast with what is usually observed in response to this training modality, oxidative metabolism and slow fibre type were mostly enhanced. We propose that prior exposure to short-term muscle unloading may drive the adaptations to subsequent exercise.
Collapse
Affiliation(s)
- Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Center, University of Padova, Padova, Italy
| | - Julián Candia
- National Institute on Aging, Baltimore, Maryland, USA
| | - Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Giacomo Valli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matteo Paganini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lisa Hartnell
- National Institute on Aging, Baltimore, Maryland, USA
| | - Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Monti
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, Institute of Physiology, University of Pavia, Pavia, Italy
| | | | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, Institute of Physiology, University of Pavia, Pavia, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Center, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Hinks A, Power GA. Age-related differences in the loss and recovery of serial sarcomere number following disuse atrophy in rats. Skelet Muscle 2024; 14:18. [PMID: 39095894 PMCID: PMC11295870 DOI: 10.1186/s13395-024-00351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Older adults exhibit a slower recovery of muscle mass following disuse atrophy than young adults. At a smaller scale, muscle fibre cross-sectional area (i.e., sarcomeres in parallel) exhibits this same pattern. Less is known, however, about age-related differences in the recovery of muscle fibre length, driven by increases in serial sarcomere number (SSN), following disuse. The purpose of this study was to investigate age-related differences in SSN adaptations and muscle mechanical function during and following muscle immobilization. We hypothesized that older adult rats would experience a similar magnitude of SSN loss during immobilization, however, take longer to recover SSN than young following cast removal, which would limit the recovery of muscle mechanical function. METHODS We casted the plantar flexors of young (8 months) and old (32 months) male rats in a shortened position for 2 weeks, and assessed recovery during 4 weeks of voluntary ambulation. Following sacrifice, legs were fixed in formalin for measurement of soleus SSN and physiological cross-sectional area (PCSA) with the un-casted soleus acting as a control. Ultrasonographic measurements of pennation angle (PA) and muscle thickness (MT) were conducted weekly. In-vivo active and passive torque-angle relationships were constructed pre-cast, post-cast, and following 4 weeks of recovery. RESULTS From pre- to post-cast, young and older adult rats experienced similar decreases in SSN (-20%, P < 0.001), muscle wet weight (-25%, P < 0.001), MT (-30%), PA (-15%, P < 0.001), and maximum isometric torque (-40%, P < 0.001), but there was a greater increase in passive torque in older (+ 180%, P < 0.001) compared to young adult rats (+ 68%, P = 0.006). Following cast removal, young exhibited quicker recovery of SSN and MT than old, but SSN recovered sooner than PA and MT in both young and old. PCSA nearly recovered and active torque fully recovered in young adult rats, whereas in older adult rats these remained unrecovered at ∼ 75%. CONCLUSIONS This study showed that older adult rats retain a better ability to recover longitudinal compared to parallel muscle morphology following cast removal, making SSN a highly adaptable target for improving muscle function in elderly populations early on during rehabilitation.
Collapse
MESH Headings
- Animals
- Male
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/diagnostic imaging
- Aging
- Rats
- Rats, Inbred F344
- Muscular Disorders, Atrophic/physiopathology
- Muscular Disorders, Atrophic/pathology
- Muscular Disorders, Atrophic/diagnostic imaging
- Muscular Disorders, Atrophic/etiology
- Recovery of Function
- Hindlimb Suspension/adverse effects
- Adaptation, Physiological
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada.
| |
Collapse
|
4
|
Sayed RKA, Hibbert JE, Jorgenson KW, Hornberger TA. The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle. Cells 2023; 12:2811. [PMID: 38132132 PMCID: PMC10741885 DOI: 10.3390/cells12242811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
The maintenance of skeletal muscle mass plays a fundamental role in health and issues associated with quality of life. Mechanical signals are one of the most potent regulators of muscle mass, with a decrease in mechanical loading leading to a decrease in muscle mass. This concept has been supported by a plethora of human- and animal-based studies over the past 100 years and has resulted in the commonly used term of 'disuse atrophy'. These same studies have also provided a great deal of insight into the structural adaptations that mediate disuse-induced atrophy. For instance, disuse results in radial atrophy of fascicles, and this is driven, at least in part, by radial atrophy of the muscle fibers. However, the ultrastructural adaptations that mediate these changes remain far from defined. Indeed, even the most basic questions, such as whether the radial atrophy of muscle fibers is driven by the radial atrophy of myofibrils and/or myofibril hypoplasia, have yet to be answered. In this review, we thoroughly summarize what is known about the macroscopic, microscopic, and ultrastructural adaptations that mediated disuse-induced atrophy and highlight some of the major gaps in knowledge that need to be filled.
Collapse
Affiliation(s)
- Ramy K. A. Sayed
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Kent W. Jorgenson
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin—Madison, Madison, WI 53706, USA; (R.K.A.S.); (J.E.H.); (K.W.J.)
- School of Veterinary Medicine, University of Wisconsin—Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Monte A, Franchi MV. Regional muscle features and their association with knee extensors force production at a single joint angle. Eur J Appl Physiol 2023; 123:2239-2248. [PMID: 37256295 PMCID: PMC10492669 DOI: 10.1007/s00421-023-05237-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/19/2023] [Indexed: 06/01/2023]
Abstract
This study aimed (i) to investigate the role of regional characteristics of the knee extensors muscles (vastus lateralis: VL, vastus intermedius: VI and rectus femoris: RF) in determining maximum-voluntary force (MVF); and (ii) to understand which regional parameter of muscle structure would best predict MVF. Muscle architecture (e.g., pennation angle and fascicle length), muscle volume (Vol), anatomical (ACSA) and physiological cross-sectional-area (PCSA) were measured in the proximal (0-33% of the muscle length), middle (33-66% of the muscle length) and distal (66-100% of the muscle length) portions of each muscle in fifteen healthy males using ultrasound and Magnetic Resonance Imaging (MRI). Knee extensors force was calculated in isometric condition at a single knee joint angle of 90 degrees. Regional ACSA, Vol and PCSA were correlated with MVF production. Regional muscle geometry showed no significant correlations with MVF. Among regions, the middle portion of each muscle was largely correlated with MVF compared to all the other regions (distal and proximal). To understand which regional structural parameter best predicted MVF, a stepwise multiple linear regression was performed. This model showed a significant explanatory power (P < 0.001, R2 = 0.76, adjusted R2 = 0.71), including muscle Vol collected in the mid portions of VL and RF. Even if no significant differences were reported between Vol, PCSA and ACSA in determining MVF, our results showed that the RF and VL volume collected in the middle portion of the muscle length are strong determinants of MVF produced by the knee extensors at 90 degrees joint angle.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padua, Via Marzolo 3, 35131, Padua, Italy.
- CIR-MYO Myology Centre, University of Padua, Padua, Italy.
| |
Collapse
|
6
|
Pus K, Paravlic AH, Šimunič B. The use of tensiomyography in older adults: a systematic review. Front Physiol 2023; 14:1213993. [PMID: 37398907 PMCID: PMC10311920 DOI: 10.3389/fphys.2023.1213993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction: Aging of skeletal muscles results in a cascade of events negatively affecting muscle mass, strength, and function, leading to reduced mobility, increased risk of falls, disability, and loss of independence. To date, different methods are used to assess muscle mechanical function, tensiomyography (TMG) being one of them. The aim of this review was twofold: to summarize the evidence-based usefulness of tensiomyography in older adults and to establish reference values for the main tensiomyography parameters in older adults. Methods: The PubMed, Web of Science, SPORTDiscus, and tensiomyography databases were searched from inception until 25 December 2022. Studies investigating older adults (aged 60+ years) that reported tensiomyography-derived parameters such as contraction time (Tc) and/or maximal displacement (Dm) were included. Methodological quality was assessed using the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Results: In total, eight studies satisfied the inclusion criteria. Tensiomyography has been used on different groups of older adults, including asymptomatic, master athletes, patients with peripheral arterial disease, and patients with end-stage knee osteoarthritis with a mean age of 71.5 ± 5.38 (55.7% male subjects). The most evaluated were leg muscles such as vastus lateralis (VL), gastrocnemius medialis (GM), and biceps femoris (BF). The present review demonstrates that tensiomyography is used to assess neuromuscular function in asymptomatic and diseased older adults. When compared to asymptomatic individuals, power master athletes, knee osteoarthritis patients, and patients diagnosed with peripheral arterial disease have the shortest Tc in BF, VL, and GM muscles, respectively. On the other hand, endurance master athletes showed the longest Tc in all three evaluated muscles. Less mobile, nursing-home residents showed higher Dm in VL and BF, while lower Dm in GM than the asymptomatic group. The knee osteoarthritis group showed the largest Dm in BF and VL while having the smallest Dm in GM. Conclusion: Tensiomyography can serve as a valuable tool for assessing neuromuscular function in older adults. The method is sensitive to muscle composition, architecture, and (pre) atrophic changes of the skeletal muscles and might be responsive to muscle quality changes in aging and diseased populations. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=402345, identifier CRD42023402345.
Collapse
Affiliation(s)
- Katarina Pus
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Health Sciences, Alma Mater Europaea—ECM, Maribor, Slovenia
| | - Armin H. Paravlic
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Sports Studies, Masaryk University, Brno, Czechia
| | - Boštjan Šimunič
- Science and Research Centre Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
7
|
Frouin A, Guenanten H, Le Sant G, Lacourpaille L, Liebard M, Sarcher A, McNair PJ, Ellis R, Nordez A. Validity and Reliability of 3-D Ultrasound Imaging to Measure Hamstring Muscle and Tendon Volumes. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1457-1464. [PMID: 36948893 DOI: 10.1016/j.ultrasmedbio.2023.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE The validity and reliability of 3-D ultrasound (US) in estimation of muscle and tendon volume was assessed in a very limited number of muscles that can be easily immersed. The objective of the present study was to assess the validity and reliability of muscle volume measurements for all hamstring muscle heads and gracilis (GR), as well as tendon volume for the semitendinosus (ST) and GR using freehand 3-D US. METHODS Three-dimensional US acquisitions were performed for 13 participants in two distinct sessions on separate days, in addition to one session dedicated to magnetic resonance imaging (MRI). Volumes of ST, semimembranosus (SM), biceps femoris short (BFsh) and long (BFlh) heads, and GR muscles and from the tendon from semitendinosus (STtd) and gracilis (GRtd) were collected. RESULTS The bias and the 95% confidence intervals of 3-D US compared with MRI ranged from -1.9 mL (-0.8%) to 1.2 mL (1.0%) for muscle volume and from 0.01 mL (0.2%) to -0.03 mL (-2.6%) for tendon volume. For muscle volume assessed using 3-D US, intraclass correlation coefficients (ICCs) ranged from 0.98 (GR) to 1.00, and coefficients of variation (CV) from 1.1% (SM) to 3.4% (BFsh). For tendon volume, ICCs were 0.99, and CVs between 3.2% (STtd) and 3.4% (GRtd). CONCLUSION Three-dimensional US can provide a valid and reliable inter-day measurement of hamstrings and GR for both muscle and tendon volumes. In the future, this technique could be used as an outcome for strengthening interventions and potentially in clinical environments.
Collapse
Affiliation(s)
- Antoine Frouin
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France; Institut Sport Atlantique (ISA), Nantes, France
| | - Hugo Guenanten
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
| | - Guillaume Le Sant
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France; School of Physiotherapy, IFM3R, Nantes, France
| | - Lilian Lacourpaille
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
| | - Martin Liebard
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France; School of Physiotherapy, IFM3R, Nantes, France
| | - Aurélie Sarcher
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
| | - Peter J McNair
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Richard Ellis
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand; Active Living and Rehabilitation: Aotearoa, Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Antoine Nordez
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France; Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
8
|
Upregulation of Sarcolemmal Hemichannels and Inflammatory Transcripts with Neuromuscular Junction Instability during Lower Limb Unloading in Humans. BIOLOGY 2023; 12:biology12030431. [PMID: 36979123 PMCID: PMC10044797 DOI: 10.3390/biology12030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
Human skeletal muscle atrophy and a disproportionate force loss occur within a few days of unloading in space and on Earth, but the underlying mechanisms are not fully understood. Disruption of neuromuscular junction homeostasis has been proposed as one of the possible causes. Here, we investigated the potential mechanisms involved in this neuromuscular disruption induced by a 10-day unilateral lower limb suspension (ULLS) in humans. Specifically, we investigated hemichannels’ upregulation, neuromuscular junction and axonal damage, neurotrophins’ receptor downregulation and inflammatory transcriptional signatures. Biomarkers were evaluated at local and systemic levels. At the sarcolemmal level, changes were found to be associated with an increased expression of connexin 43 and pannexin-1. Upregulation of the inflammatory transcripts revealed by deep transcriptomics was found after 10 days of ULLS. The destabilisation of the neuromuscular junction was not accompanied by changes in the secretion of the brain-derived neurotrophic factor and neurotrophin-4, while their receptor, BDNF/NT growth factors receptor (TrkB), decreased. Furthermore, at 5 days of ULLS, there was already a significant upregulation of the serum neurofilament light chain concentration, an established clinical biomarker of axonal injury. At 10 days of ULLS, other biomarkers of early denervation processes appeared. Hence, short periods of muscle unloading induce sarcolemmal hemichannels upregulation, inflammatory transcripts upregulation, neuromuscular junction instability and axonal damage.
Collapse
|
9
|
Murgia M, Brocca L, Monti E, Franchi MV, Zwiebel M, Steigerwald S, Giacomello E, Sartori R, Zampieri S, Capovilla G, Gasparini M, Biolo G, Sandri M, Mann M, Narici MV. Plasma proteome profiling of healthy subjects undergoing bed rest reveals unloading-dependent changes linked to muscle atrophy. J Cachexia Sarcopenia Muscle 2023; 14:439-451. [PMID: 36517414 PMCID: PMC9891930 DOI: 10.1002/jcsm.13146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Inactivity and unloading induce skeletal muscle atrophy, loss of strength and detrimental metabolic effects. Bed rest is a model to study the impact of inactivity on the musculoskeletal system. It not only provides information for bed-ridden patients care, but it is also a ground-based spaceflight analogue used to mimic the challenges of long space missions for the human body. In both cases, it would be desirable to develop a panel of biomarkers to monitor muscle atrophy in a minimally invasive way at point of care to limit the onset of muscle loss in a personalized fashion. METHODS We applied mass spectrometry-based proteomics to measure plasma protein abundance changes in response to 10 days of bed rest in 10 young males. To validate the correlation between muscle atrophy and the significant hits emerging from our study, we analysed in parallel, with the same pipeline, a cohort of cancer patients with or without cachexia and age-matched controls. Our analysis resulted in the quantification of over 500 proteins. RESULTS Unloading affected plasma concentration of proteins of the complement cascade, lipid carriers and proteins derived from tissue leakage. Among the latter, teneurin-4 increased 1.6-fold in plasma at bed rest day 10 (BR10) compared with BR0 (6.E9 vs. 4.3E9, P = 0.02) and decreased to 0.6-fold the initial abundance after 2 days of recovery at normal daily activity (R + 2, 2.7E9, P = 3.3E-4); the extracellular matrix protein lumican was decreased to 0.7-fold (1.2E9 vs. 8.5E8, P = 1.5E-4) at BR10 and remained as low at R + 2. We identified six proteins distinguishing subjects developing unloading-mediated muscle atrophy (decrease of >4% of quadriceps cross-sectional area) from those largely maintaining their initial muscle mass. Among them, transthyretin, a thyroid hormone-binding protein, was significantly less abundant at BR10 in the plasma of subjects with muscle atrophy compared with those with no atrophy (1.6E10 vs. 2.6E10, P = 0.001). Haptoglobin-related protein was also significantly reduced in the serum of cancer patients with cachexia compared with that of controls. CONCLUSIONS Our findings highlight a combination or proteomic changes that can be explored as potential biomarkers of muscle atrophy occurring under different conditions. The panel of significant proteomic differences distinguishing atrophy-prone and atrophy-resistant subjects after 10 days of bed rest need to be tested in a larger cohort to validate their potential to predict inactivity-triggered muscle loss in humans.
Collapse
Affiliation(s)
- Marta Murgia
- Department of Biomedical SciencesUniversity of PadovaPaduaItaly
- Max‐Planck‐Institute of BiochemistryMartinsriedGermany
| | - Lorenza Brocca
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Elena Monti
- Department of Biomedical SciencesUniversity of PadovaPaduaItaly
| | - Martino V. Franchi
- Department of Biomedical SciencesUniversity of PadovaPaduaItaly
- CIR‐MYO Myology CenterPaduaItaly
| | | | | | - Emiliana Giacomello
- Department of Medicine, Surgery and Health SciencesUniversity of TriesteTriesteItaly
| | - Roberta Sartori
- Department of Biomedical SciencesUniversity of PadovaPaduaItaly
- Veneto Institute of Molecular MedicinePadovaItaly
| | - Sandra Zampieri
- Department of Biomedical SciencesUniversity of PadovaPaduaItaly
- CIR‐MYO Myology CenterPaduaItaly
- Department of Surgical, Oncological and Gastroenterological SciencesPadova University HospitalPaduaItaly
| | - Giovanni Capovilla
- Department of Surgical, Oncological and Gastroenterological SciencesPadova University HospitalPaduaItaly
| | | | - Gianni Biolo
- Department of Medicine, Surgery and Health SciencesUniversity of TriesteTriesteItaly
| | - Marco Sandri
- Department of Biomedical SciencesUniversity of PadovaPaduaItaly
- Veneto Institute of Molecular MedicinePadovaItaly
| | - Matthias Mann
- Max‐Planck‐Institute of BiochemistryMartinsriedGermany
- NNF Center for Protein Research, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Marco V. Narici
- Department of Biomedical SciencesUniversity of PadovaPaduaItaly
- CIR‐MYO Myology CenterPaduaItaly
| |
Collapse
|