1
|
Lopes TR, de Oliveira DM, Amoroso de Lima LA, Silva BM. Breathing variability during running in athletes: The role of sex, exercise intensity and breathing reserve. Respir Physiol Neurobiol 2024; 331:104350. [PMID: 39270950 DOI: 10.1016/j.resp.2024.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Highly trained aerobic athletes progressively use most of their breathing reserve with increased exercise intensity during whole-body exercise. Additionally, females typically present proportionally smaller lungs than males. Therefore, sex, exercise intensity, and breathing reserve use likely influence the volume and time in which respiratory parameters vary between consecutive breaths during whole-body exercise. However, breath-by-breath variability has been scarcely investigated during exercise. Accordingly, we sought to investigate breath-by-breath pulmonary ventilation (V̇E), tidal volume (VT), and respiratory frequency (fR) variability during a maximal treadmill incremental exercise test in 17 females and 18 males highly trained professional endurance runners. The breath-by-breath variability was analyzed by root mean square of successive differences (RMSSD) within 1-minute windows. Females had lower absolute and percent predicted forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) than males, as well as lower height-adjusted absolute FVC than males. V̇E and VT reserve use were similar between the sexes at peak exercise. While RMSSDV̇E and RMSSDfR did not change over exercise (P > 0.05), RMSSDVT progressively decreased (P < 0.001). RMSSDVT was negatively correlated with VT reserve use only in males. Females showed lower RMSSDV̇E than males during the entire exercise test (P < 0.001). At iso-V̇E reserve use, between-sex differences in RMSSDV̇E persisted (P = 0.003). Our findings indicate that exercise intensity decreases VT variability in professional runners, which is linked to VT reserve use in males but not females. Additionally, the female sex lowers V̇E variability regardless of exercise intensity and V̇E reserve use.
Collapse
Affiliation(s)
- Thiago Ribeiro Lopes
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil; São Paulo Association for Medicine Development, São Paulo, Sp, Brazil; Post-graduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Diogo Machado de Oliveira
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil; Post-graduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Luís Adriano Amoroso de Lima
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil; Post-graduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Bruno Moreira Silva
- Laboratory of Exercise Physiology at Olympic Center of Training and Research, Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil; Post-graduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Aranda LC, Ribeiro IC, Freitas TO, Degani-Costa LH, Dias DS, De Angelis K, Paixão AO, Brum PC, Oliveira ASB, Vianna LC, Nery LE, Silva BM. Altered locomotor muscle metaboreflex control of ventilation in patients with COPD. J Appl Physiol (1985) 2024; 136:385-398. [PMID: 38174374 DOI: 10.1152/japplphysiol.00560.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
We investigated the locomotor muscle metaboreflex control of ventilation, circulation, and dyspnea in patients with chronic obstructive pulmonary disease (COPD). Ten patients [forced expiratory volume in 1 second (FEV1; means ± SD) = 43 ± 17% predicted] and nine age- and sex-matched controls underwent 1) cycling exercise followed by postexercise circulatory occlusion (PECO) to activate the metaboreflex or free circulatory flow to inactivate it, 2) cold pressor test to interpret whether any altered reflex response was specific to the metaboreflex arc, and 3) muscle biopsy to explore the metaboreflex arc afferent side. We measured airflow, dyspnea, heart rate, arterial pressure, muscle blood flow, and vascular conductance during reflexes activation. In addition, we measured fiber types, glutathione redox balance, and metaboreceptor-related mRNAs in the vastus lateralis. Metaboreflex activation increased ventilation versus free flow in patients (∼15%, P < 0.020) but not in controls (P > 0.450). In contrast, metaboreflex activation did not change dyspnea in patients (P = 1.000) but increased it in controls (∼100%, P < 0.001). Other metaboreflex-induced responses were similar between groups. Cold receptor activation increased ventilation similarly in both groups (P = 0.46). Patients had greater type II skeletal myocyte percentage (14%, P = 0.010), lower glutathione ratio (-34%, P = 0.015), and lower nerve growth factor (NGF) mRNA expression (-60%, P = 0.031) than controls. Therefore, COPD altered the locomotor muscle metaboreflex control of ventilation. It increased type II myocyte percentage and elicited redox imbalance, potentially producing more muscle metaboreceptor stimuli. Moreover, it decreased NGF expression, suggesting a downregulation of metabolically sensitive muscle afferents.NEW & NOTEWORTHY This study's integrative physiology approach provides evidence for a specific alteration in locomotor muscle metaboreflex control of ventilation in patients with COPD. Furthermore, molecular analyses of a skeletal muscle biopsy suggest that the amount of muscle metaboreceptor stimuli derived from type II skeletal myocytes and redox imbalance overcame a downregulation of metabolically sensitive muscle afferents.
Collapse
Affiliation(s)
- Liliane C Aranda
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Respiratory Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Physiology, UNIFESP, São Paulo, Brazil
| | - Indyanara C Ribeiro
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Respiratory Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Physiology, UNIFESP, São Paulo, Brazil
| | - Tiago O Freitas
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Respiratory Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Physiology, UNIFESP, São Paulo, Brazil
| | - Luiza H Degani-Costa
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Respiratory Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | - Ailma O Paixão
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Patricia C Brum
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasilia, Brasilia, Brazil
| | - Luiz E Nery
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Respiratory Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Bruno M Silva
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Respiratory Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Physiology, UNIFESP, São Paulo, Brazil
| |
Collapse
|