1
|
Van Hooren B, Lepers R. A physiological comparison of the new-over 70 years of age-marathon record holder and his predecessor: A case report. Front Physiol 2023; 14:1122315. [PMID: 36860525 PMCID: PMC9969103 DOI: 10.3389/fphys.2023.1122315] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Purpose: This study assessed the body composition, cardiorespiratory fitness, fiber type and mitochondrial function, and training characteristics of a 71-year-old runner who broke the world record marathon of the men's 70-74 age category and held several other world records. The values were compared to those of the previous world-record holder. Methods: Body fat percentage was assessed using air-displacement plethysmography. V ˙ O 2 max , running economy, and maximum heart rate were measured during treadmill running. Muscle fiber typology and mitochondrial function were evaluated using a muscle biopsy. Results: Body fat percentage was 13.5%, V ˙ O 2 max was 46.6 ml kg-1 min-1, and maximum heartrate was 160 beats∙min-1. At the marathon pace (14.5 km h-1), his running economy was 170.5 ml kg-1 km-1. The gas exchange threshold and respiratory compensation point occurred at 75.7% and 93.9% of the V ˙ O 2 max , i.e., 13 km h-1 and 15 km h-1, respectively. The oxygen uptake at the marathon pace corresponded to 88.5% of V ˙ O 2 max . Vastus lateralis fiber content was 90.3% type I and 9.7% type II. Average distance was 139 km∙w-1 in the year prior to the record. Conclusion: The 71-year-old world-record holder marathon showed a relatively similar V ˙ O 2 max , lower percentage of V ˙ O 2 max at marathon pace, but a substantially better running economy than his predecessor. The better running economy may result from an almost double weekly training volume compared to the predecessor and a high type I fiber content. He trained every day in the last ∼1.5 years and achieved international performance in his age group category with a small (<5% per decade) age-related decline in marathon performance.
Collapse
Affiliation(s)
- Bas Van Hooren
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Department of Nutrition and Movement Sciences, Maastricht, Netherlands,*Correspondence: Bas Van Hooren,
| | - Romuald Lepers
- INSERM UMR1093, Cognition Action et Plasticité Sensorimotrice, Faculty of Sport Sciences, University of Bourgogne, Dijon, France
| |
Collapse
|
2
|
Gerstner GR, Mota JA, Giuliani HK, Weaver MA, Shea NW, Ryan ED. The impact of repeated bouts of shiftwork on rapid strength and reaction time in career firefighters. ERGONOMICS 2022; 65:1086-1094. [PMID: 34882513 DOI: 10.1080/00140139.2021.2016997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The purpose of this study was to examine the influence of repeated bouts of shiftwork on lower extremity maximal and rapid strength and reaction time in career firefighters. Thirty-five firefighters (3 females; 34.3 ± 9.1 years) performed a psychomotor vigilance test (PVT) and reactive maximal isometric strength assessment prior to and following a full shift rotation (three 24-hr on-off shifts). Reaction time (RT), maximal, absolute and normalised rapid strength (50, 100, 150, 200 ms), and PVT measures were assessed on-site. Separate linear regression models were used to evaluate the POST-PRE change in variables adjusted for BMI, age, sleep, and call duration. Early (50 ms) absolute rapid strength was the only variable significantly reduced (-25.9%; p = 0.031) following the full shift rotation. Our findings indicate that early rapid strength may be a sensitive measure in detecting work-related fatigue, despite minimal changes in sleep between work and non-work nights and a low call duration. Practitioner summary: We examined the impact of repeated shiftwork on changes in reaction time and neuromuscular function. Early rapid strength was a sensitive, portable lab assessment that feasibly measured work-related fatigue in career firefighters. Interventions that mitigate work-related fatigue may be impactful at preventing falls and/or risk of musculoskeletal injury.
Collapse
Affiliation(s)
- Gena R Gerstner
- Neuromechanics Laboratory, Department of Human Movement Sciences, Old Dominion University, Norfolk, VA, USA
| | - Jacob A Mota
- Department of Kinesiology, University of Alabama, Tuscaloosa, AL, USA
| | - Hayden K Giuliani
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark A Weaver
- Department of Mathematics and Statistics, Elon University, Elon, NC, USA
| | | | - Eric D Ryan
- Neuromuscular Assessment Laboratory, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Reece TM, Arnold CE, Herda TJ. An examination of motor unit firing rates during steady torque of maximal efforts with either an explosive or slower rate of torque development. Exp Physiol 2021; 106:2517-2530. [PMID: 34676609 DOI: 10.1113/ep089808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to explore agonist and antagonist motor unit firing rates during maximal efforts performed with either an explosive or a slower rate of torque development. What is the main finding and its importance? The antagonist muscle presented a motor unit firing rate relationship similar to the agonist muscle. Additionally, the motor units of both muscles exhibited higher firing rates during explosive maximal contractions than during maximal contractions performed at a slower rate of torque development. These results could prove useful to future research analysing the effects of age, disease, resistance training and/or fatigue-related alterations to motor unit firing rates. ABSTRACT The primary purpose of the present study was to examine motor unit (MU) firing rates in agonist and antagonist muscles during periods of steady, maximal efforts using explosive and slower rates of torque development. A secondary purpose was to analyse the MU firing rate versus action potential amplitude relationships of the agonist and antagonist muscles during maximal efforts. Thirteen subjects (mean ± SD; age, 21.2 ± 3.6 years; mass 81.1 ± 21.3 kg; and stature, 177.1±9.9 cm) performed two maximal isometric trapezoid muscle actions of the elbow flexors that included either an explosive or a slower, linearly increasing rate (ramp) of torque development. Surface EMG signals of the biceps brachii (BB) and triceps brachii (TB) muscles were collected and decomposed into their constituent MU action potential trains. The MU firing rate versus action potential amplitude relationships of the BB (agonist) and TB (antagonist) muscles were analysed. Moderate to strong relationships (|r| ≥ 0.65) were present for the explosive and ramp contractions in the agonist and antagonist muscles. Firing rates of smaller and larger MUs were higher during the explosive [mean ± SD; agonist = 18.1 ± 6.9 pulses per second (pps), antagonist = 22.0±3.9 pps] than the ramp (agonist = 14.0 ± 5.1 pps, antagonist = 18.3 ± 4.4 pps) contractions for the agonist (P = 0.013) and antagonist muscles (P = 0.007). The antagonist muscle exhibits a similar MU firing rate versus action potential amplitude relationship to the agonist muscle at maximal efforts. Future research should investigate the effects of short-term resistance training on antagonist firing rates and the involvement of peripheral feedback on firing rates during maximal efforts performed at various rates of torque development.
Collapse
Affiliation(s)
- Tanner M Reece
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| | - Catherine E Arnold
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
4
|
Reece TM, Herda TJ. An examination of a potential organized motor unit firing rate and recruitment scheme of an antagonist muscle during isometric contractions. J Neurophysiol 2021; 125:2094-2106. [PMID: 33909509 DOI: 10.1152/jn.00034.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary purpose of the present study is to determine if an organized control scheme exists for the antagonist muscle during steady isometric torque. A secondary focus is to better understand how firing rates of the antagonist muscle change from a moderate- to higher-contraction intensity. Fourteen subjects performed two submaximal isometric trapezoid muscle actions of the forearm flexors that included a linearly increasing, steady force at both 40% and 70% maximum voluntary contraction, and linearly decreasing segments. Surface electromyographic signals of the biceps and triceps brachii were collected and decomposed into constituent motor unit action potential trains. Motor unit firing rate versus recruitment threshold, motor unit action potential amplitude versus recruitment threshold, and motor unit firing rate versus action potential amplitude relationships of the biceps brachii (agonist) and triceps brachii (antagonist) muscles were analyzed. Moderate- to-strong relationships (|r| ≥ 0.69) were present for the agonist and antagonist muscles for each relationship with no differences between muscles (P = 0.716, 0.428, 0.182). The y-intercepts of the motor unit firing rate versus recruitment threshold relationship of the antagonist did not increase from 40% to 70% maximal voluntary contractions (P = 0.96), unlike for the agonist (P = 0.009). The antagonist muscle exhibits a similar motor unit control scheme to the agonist. Unlike the agonist, however, the firing rates of the antagonist did not increase with increasing intensity. Future research should investigate how antagonist firing rates adapt to resistance training and changes in antagonist firing rates in the absence of peripheral feedback.NEW & NOTEWORTHY This is the first study to explore a potential motor unit control scheme and quantify changes in firing rates with increasing intensity of an antagonist muscle during isometric contractions. We demonstrate that the antagonist muscle possesses an organized motor unit firing rate and recruitment scheme similar to the agonist muscle during isometric forearm flexion, but unlike the agonist muscle, there was no significant increase in firing rates from a moderate- to higher-intensity isometric contraction.
Collapse
Affiliation(s)
- Tanner M Reece
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, Kansas
| | - Trent J Herda
- Neuromechanics Laboratory, Department of Health, Sport and Exercise Sciences, University of Kansas, Lawrence, Kansas
| |
Collapse
|
5
|
James E, Nichols S, Goodall S, Hicks KM, O'Doherty AF. The influence of resistance training on neuromuscular function in middle-aged and older adults: A systematic review and meta-analysis of randomised controlled trials. Exp Gerontol 2021; 149:111320. [PMID: 33774145 DOI: 10.1016/j.exger.2021.111320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Deterioration of neuromuscular function is a major mechanism of age-related strength loss. Resistance training (RT) improves muscle strength and mass. However, the effects of RT on neuromuscular adaptations in middle-aged and older adults are unclear. METHODS Randomised controlled RT interventions (≥2 weeks) involving adults aged ≥50 years were identified. Primary outcome measures were voluntary activation (VA), electromyographic (EMG) activity during maximal voluntary contraction (MVC), and antagonist coactivation. Data were pooled using a weighted random-effect model. Sub-analyses were conducted by muscle or muscle group and health status of participants. Sensitivity analysis was based on study quality. P < 0.05 indicated statistical significance. RESULTS Twenty-seven studies were included. An effect was found for VA (standardised mean difference [SMD] 0.54, 0.01 to 1.07, P = 0.04), This result remained significant following sensitivity analysis involving only studies that were low risk of bias. Subgroup analyses showed an effect for plantar flexor VA (SMD 1.13, 0.20 to 2.06, P = 0.02) and VA in healthy participants (SMD 1.04, 0.32 to 1.76, P = 0.004). There was no effect for EMG activity or antagonist coactivation of any muscle group (P > 0.05). DISCUSSION Resistance training did not alter EMG activity or antagonist coactivation in older adults. Sensitivity analysis resulted in the effect for VA remaining significant, indicating that this finding was not dependent on study quality. Studies predominantly involved healthy older adults (78%), limiting the generalisability of these findings to clinical cohorts. Future research should determine the effects of RT on neuromuscular function in people with sarcopenia and age-related syndromes.
Collapse
Affiliation(s)
- Emily James
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, United Kingdom.
| | - Simon Nichols
- Sport and Physical Activity Research Group, Sheffield Hallam University, Sheffield, United Kingdom; Advanced Wellbeing Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, United Kingdom
| | - Kirsty M Hicks
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, United Kingdom
| | - Alasdair F O'Doherty
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, United Kingdom
| |
Collapse
|
6
|
Orssatto LBR, Wiest MJ, Moura BM, Collins DF, Diefenthaeler F. Neuromuscular determinants of explosive torque: Differences among strength-trained and untrained young and older men. Scand J Med Sci Sports 2020; 30:2092-2100. [PMID: 32749004 DOI: 10.1111/sms.13788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/03/2023]
Abstract
This study compared the differences in neural and muscular mechanisms related to explosive torque in chronically strength-trained young and older men (>5 years). Fifty-four participants were allocated into four groups according to age and strength training level: older untrained (n = 14; 65.6 ± 2.9 years), older trained (n = 12; 63.6 ± 3.8 years), young untrained (n = 14; 26.2 ± 3.7 years), and young trained (n = 14; 26.7 ± 3.4 years). Knee extension isometric voluntary explosive torque (absolute and normalized as a percentage of maximal voluntary torque) was assessed at the beginning of the contraction (ie, 50, 100, and 150 ms-T50, T100, and T150, respectively), and surface electromyogram (sEMG) amplitude (normalized as a percentage of sEMG recorded during maximal voluntary isometric contraction) at 0-50, 50-100, and 100-150 time windows. Supramaximal electrically evoked T50 was assessed with octet trains delivered to the femoral nerve (8 pulses at 300 Hz). Voluntary T50, T100, and T150 were higher for trained than untrained in absolute (P < 0.001) and normalized (P < 0.030) terms, accompanied by higher sEMG at 0-50, 50-100, and 100-150 ms (P < 0.001), and voluntary T50/octet T50 ratio for trained. Greater octet T50 was observed for the young trained (P < 0.001) but not for the older trained (P = 0.273) compared to their untrained counterparts. Age effect was observed for voluntary T50, T100, and T150 (P < 0.050), but normalization removed these differences (P > 0.417). Chronically strength-trained young and older men presented a greater explosive torque than their untrained pairs. In young trained, the greater explosive performance was attributed to enhanced muscular and neural mechanisms, while in older trained to neural mechanisms only.
Collapse
Affiliation(s)
- Lucas B R Orssatto
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Matheus J Wiest
- Neural Engineering & Therapeutic Team, KITE, Toronto Rehab, University Health Network, Toronto, ON, Canada
| | - Bruno M Moura
- Biomechanics Laboratory, Federal University of Santa Catarina, Florianópolis, Brazil
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
7
|
Effects of Resistance Training Movement Pattern and Velocity on Isometric Muscular Rate of Force Development: A Systematic Review with Meta-analysis and Meta-regression. Sports Med 2020; 50:943-963. [DOI: 10.1007/s40279-019-01239-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Age Does Not Attenuate Maximal Velocity Adaptations in the Ipsilateral and Contralateral Limbs During Unilateral Resistance Training. J Aging Phys Act 2019; 27:1-8. [DOI: 10.1123/japa.2017-0297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Effect of resistance training on muscle strength and rate of force development in healthy older adults: A systematic review and meta-analysis. Exp Gerontol 2018; 102:51-58. [DOI: 10.1016/j.exger.2017.11.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 11/22/2022]
|
10
|
Morcelli MH, LaRoche DP, Crozara LF, Marques NR, Hallal CZ, Rossi DM, Gonçalves M, Navega MT. Neuromuscular performance in the hip joint of elderly fallers and non-fallers. Aging Clin Exp Res 2016; 28:443-50. [PMID: 26400861 DOI: 10.1007/s40520-015-0448-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/09/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUNDS Low strength and neuromuscular activation of the lower limbs have been associated with falls making it an important predictor of functional status in the elderly. AIM To compare the rate of neuromuscular activation, rate of torque development, peak torque and reaction time between young and elderly fallers and non-fallers for hip flexion and extension. METHODS We evaluated 44 elderly people who were divided into two groups: elderly fallers (n = 20) and elderly non-fallers (n = 24); and 18 young people. The subjects performed three isometric hip flexion and extension contractions. Electromyography data were collected for the rectus femoris, gluteus maximus and biceps femoris muscles. RESULTS The elderly had 49 % lower peak torque and 68 % lower rate of torque development for hip extension, 28 % lower rate of neuromuscular activation for gluteus maximus and 38 % lower rate of neuromuscular activation for biceps femoris than the young (p < 0.05). Furthermore, the elderly had 42 % lower peak torque and 62 % lower rate of torque development for hip flexion and 48 % lower rate of neuromuscular for rectus femoris than the young (p < 0.05). The elderly fallers showed consistent trend toward a lower rate of torque development than elderly non-fallers for hip extension at 50 ms (29 %, p = 0.298, d = 0.76) and 100 ms (26 %, p = 0.452, d = 0.68).The motor time was 30 % slower for gluteus maximus, 42 % slower for rectus femoris and 50 % slower for biceps femoris in the elderly than in the young. DISCUSSION Impaired capacity of the elderly, especially fallers, may be explained by neural and morphological aspects of the muscles. CONCLUSION The process of senescence affects the muscle function of the hip flexion and extension, and falls may be related to lower rate of torque development and slower motor time of biceps femoris.
Collapse
Affiliation(s)
- Mary Hellen Morcelli
- Department of Physical Education, São Paulo State University, São Paulo, Brazil.
- Departamento de Fisioterapia e Terapia Ocupacional, Universidade Estadual Paulista, Avenida Hygino Muzzi Filho, 737- Mirante, Marília, SP, CEP: 17.525-000, Brazil.
| | | | | | - Nise Ribeiro Marques
- Department of Physical Therapy and Occupational Therapy, São Paulo State University, São Paulo, Brazil
| | | | | | - Mauro Gonçalves
- Department of Physical Education, São Paulo State University, São Paulo, Brazil
| | - Marcelo Tavella Navega
- Department of Physical Therapy and Occupational Therapy, São Paulo State University, São Paulo, Brazil
| |
Collapse
|
11
|
Morcelli MH, Rossi DM, Karuka AH, Crozara LF, Hallal CZ, Marques NR, Gonçalves M, Navega MT. Peak torque, reaction time, and rate of torque development of hip abductors and adductors of older women. Physiother Theory Pract 2016; 32:45-52. [DOI: 10.3109/09593985.2015.1091870] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Behrens M, Brown N, Bollinger R, Bubeck D, Mau-Moeller A, Weippert M, Zschorlich V, Bruhn S, Alt W. Relationship between muscle volume and contractile properties of the human knee extensors. Appl Physiol Nutr Metab 2015; 41:110-3. [PMID: 26701119 DOI: 10.1139/apnm-2015-0378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to investigate the relationship between volume and electrically evoked twitch properties of the quadriceps muscle. Supramaximal single and doublet stimulation of the femoral nerve was used to assess contractile properties at 45° and 80° knee flexion. Muscle volume was measured using a 1.5-Tesla magnetic resonance imaging scanner. Quadriceps muscle volume was only significantly correlated (r = 0.629) with peak twitch torque induced by doublet stimulation at 80° but not at 45° knee flexion.
Collapse
Affiliation(s)
- Martin Behrens
- a Institute of Sport Science, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany
| | - Niklas Brown
- b Department of Sport and Exercise Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany
| | - Robert Bollinger
- b Department of Sport and Exercise Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany
| | - Dieter Bubeck
- b Department of Sport and Exercise Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany
| | - Anett Mau-Moeller
- c Department of Orthopaedics, University Medicine Rostock, Doberaner Straße 142, 18057 Rostock, Germany
| | - Matthias Weippert
- a Institute of Sport Science, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany
| | - Volker Zschorlich
- a Institute of Sport Science, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany
| | - Sven Bruhn
- a Institute of Sport Science, University of Rostock, Ulmenstraße 69, 18057 Rostock, Germany
| | - Wilfried Alt
- b Department of Sport and Exercise Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany
| |
Collapse
|
13
|
McGuire J, Green LA, Gabriel DA. Task complexity and maximal isometric strength gains through motor learning. Physiol Rep 2014; 2:2/11/e12218. [PMID: 25428951 PMCID: PMC4255822 DOI: 10.14814/phy2.12218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study compared the effects of a simple versus complex contraction pattern on the acquisition, retention, and transfer of maximal isometric strength gains and reductions in force variability. A control group (N = 12) performed simple isometric contractions of the wrist flexors. An experimental group (N = 12) performed complex proprioceptive neuromuscular facilitation (PNF) contractions consisting of maximal isometric wrist extension immediately reversing force direction to wrist flexion within a single trial. Ten contractions were completed on three consecutive days with a retention and transfer test 2‐weeks later. For the retention test, the groups performed their assigned contraction pattern followed by a transfer test that consisted of the other contraction pattern for a cross‐over design. Both groups exhibited comparable increases in strength (20.2%, P < 0.01) and reductions in mean torque variability (26.2%, P < 0.01), which were retained and transferred. There was a decrease in the coactivation ratio (antagonist/agonist muscle activity) for both groups, which was retained and transferred (35.2%, P < 0.01). The experimental group exhibited a linear decrease in variability of the torque‐ and sEMG‐time curves, indicating transfer to the simple contraction pattern (P < 0.01). The control group underwent a decrease in variability of the torque‐ and sEMG‐time curves from the first day of training to retention, but participants returned to baseline levels during the transfer condition (P < 0.01). However, the difference between torque RMS error versus the variability in torque‐ and sEMG‐time curves suggests the demands of the complex task were transferred, but could not be achieved in a reproducible way. This study examines the effect of task complexity on the acquisition, retention, and transfer of increases in maximal strength and decreases in force variability, which is novel. Simple agonist‐only contractions are compared to a more complex reversal contraction pattern as used during proprioceptive neuromuscular facilitation (PNF). The goal was to determine if the more complex contraction pattern interferes with the strength gains and reduced variability by impeding the development of agonist‐antagonist coordination.
Collapse
Affiliation(s)
- Jessica McGuire
- Electromyographic Kinesiology Laboratory, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Lara A Green
- Electromyographic Kinesiology Laboratory, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - David A Gabriel
- Electromyographic Kinesiology Laboratory, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
14
|
Arnold P, Bautmans I. The influence of strength training on muscle activation in elderly persons: A systematic review and meta-analysis. Exp Gerontol 2014; 58:58-68. [DOI: 10.1016/j.exger.2014.07.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 06/23/2014] [Accepted: 07/23/2014] [Indexed: 01/21/2023]
|
15
|
Jenkins ND, Buckner SL, Cochrane KC, Bergstrom HC, Palmer TB, Johnson GO, Schmidt RJ, Housh TJ, Cramer JT. Age-related differences in rates of torque development and rise in EMG are eliminated by normalization. Exp Gerontol 2014; 57:18-28. [DOI: 10.1016/j.exger.2014.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 04/28/2014] [Indexed: 11/24/2022]
|
16
|
Hvid L, Suetta C, Nielsen J, Jensen M, Frandsen U, Ørtenblad N, Kjaer M, Aagaard P. Aging impairs the recovery in mechanical muscle function following 4days of disuse. Exp Gerontol 2014; 52:1-8. [DOI: 10.1016/j.exger.2014.01.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 01/05/2014] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
|
17
|
Beebe JA, Hines RW, McDaniel LT, Shelden BL. An isokinetic training program for reducing falls in a community-dwelling older adult: a case report. J Geriatr Phys Ther 2013; 36:146-53. [PMID: 22976812 DOI: 10.1519/jpt.0b013e31826e73d5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND With the population older than 65 years, projected to double by the year 2030, falls in older adults are a substantial health concern. Muscle strength deficits are one of the multifactorial components linked to increased fall risk, and decreasing these deficits has been one of the goals of interventions designed to decrease fall risk. These interventions have traditionally focused on improving peak torque; however, recent research suggests that exercise protocols that focus on the rate of torque development (RTD) may be more effective in decreasing fall risk. PURPOSE This case report examines clinical outcomes following implementation of an isokinetic strengthening protocol coupled with a balance program designed to reduce fall risk in a community-dwelling older adult. METHODS The individual was a 70-year-old woman with a history of 3 falls over the past 8 months and no related medical etiology who had self-limited her activities because of fear of another fall. She was classified as having substantial risk for future falls because of fall history, increased fear of falling, and below age norms on the Berg Balance Scale (BBS), and the Timed Up and Go (TUG). The treatment program consisted of 12 weeks of high-intensity isokinetic knee extensor training, high challenge dynamic gait and balance activities, and core strengthening. The isokinetic protocol consisted of 4 sets of 10 concentric-only repetitions at speeds of 240°/sec and 300°/sec for a total of 8 work sets. Dynamic gait activities incorporating directional and obstacle drills, and rocker and balance boards were used for balance training activities. Progressive theraband exercises were used for core strengthening. As her home program, the participant was encouraged to return to line dancing twice per week. During the 12-week protocol, the participant completed two 90-minute therapy sessions and two 90-minute dance classes per week. RESULTS After the 12 weeks of treatment, knee extensor peak torque at 150 ms improved on the right from 67.8 N to 107.1 N (57.9% increase), and on the left from 65.1 N to 97.6 N (49.9% increase). The BBS score improved from 45 to 52; and the TUG improved from 14.0 to 8.6 seconds. Both final scores exceeded fall risk cutoffs (BBS = 48; TUG = 13.5 seconds) and the change score exceeded minimal detectable change (BBS = 7; TUG 5.4 seconds). CONCLUSIONS The treatment program produced improvements in knee extensor peak torque and RTD, but more importantly, the final scores on the clinical outcome measures placed the participant above established fall-risk cutoff scores. Although future research with increased numbers of participants and a control group should be conducted to confirm this study's results, these findings support the use of isokinetic training to reduce fall risk in older adults.
Collapse
Affiliation(s)
- Justin A Beebe
- Department of Physical Therapy, University of South Dakota, Vermillion, SD 57069, USA.
| | | | | | | |
Collapse
|
18
|
Crystal NJ, Townson DH, Cook SB, LaRoche DP. Effect of cryotherapy on muscle recovery and inflammation following a bout of damaging exercise. Eur J Appl Physiol 2013; 113:2577-86. [PMID: 23873339 DOI: 10.1007/s00421-013-2693-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/03/2013] [Indexed: 02/06/2023]
Abstract
The purpose of this study was to determine the effect of cryotherapy on the inflammatory response to muscle-damaging exercise using a randomized trial. Twenty recreationally active males completed a 40-min run at a -10 % grade to induce muscle damage. Ten of the subjects were immersed in a 5 °C ice bath for 20 min and the other ten served as controls. Knee extensor peak torque, soreness rating, and thigh circumference were obtained pre- and post-run, and 1, 6, 24, 48, and 72 h post-run. Blood samples were obtained pre- and post-run, and 1, 6 and 24 h post-run for assay of plasma chemokine ligand 2 (CCL2). Peak torque decreased from 270 ± 57 Nm at baseline to 253 ± 65 Nm post-run and increased to 295 ± 68 Nm by 72 h post-run with no differences between groups (p = 0.491). Soreness rating increased from 3.6 ± 6.0 mm out of 100 mm at baseline to 47.4 ± 28.2 mm post-run and remained elevated at all time points with no differences between groups (p = 0.696). CCL2 concentrations increased from 116 ± 31 pg mL(-1) at baseline to 293 ± 109 pg mL(-1) at 6 h post-run (control) and from 100 ± 27 pg mL(-1) at baseline to 208 ± 71 pg mL(-1) at 6 h post-run (cryotherapy). The difference between groups was not significant (p = 0.116), but there was a trend for lower CCL2 in the cryotherapy group at 6 h (p = 0.102), though this measure was highly variable. In conclusion, 20 min of cryotherapy was ineffective in attenuating the strength decrement and soreness seen after muscle-damaging exercise, but may have mitigated the rise in plasma CCL2 concentration. These results do not support the use of cryotherapy during recovery.
Collapse
Affiliation(s)
- Naomi J Crystal
- Robert Kertzer Exercise Physiology Laboratory, University of New Hampshire, Durham, NH, USA,
| | | | | | | |
Collapse
|
19
|
Park WM, Kim K, Kim YH. Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine. Comput Biol Med 2013; 43:1234-40. [PMID: 23930818 DOI: 10.1016/j.compbiomed.2013.06.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
The effects of intervertebral disc (IVD) degeneration on biomechanics of the lumbar spine were analyzed. Finite element models of the lumbar spine with various degrees of IVD degeneration at the L4-L5 functional spinal unit (FSU) were developed and validated. With progression of degeneration, intersegmental rotation at the degenerated FSU decreased in flexion-extension and left-right lateral bending, intradiscal pressure at the adjacent FSUs increased in flexion and lateral bending, and facet joint forces at the degenerated FSU increased in lateral bending and axial rotation. These results could provide fundamental information for understanding the mechanism of injuries caused by IVD degeneration.
Collapse
Affiliation(s)
- Won Man Park
- Department of Mechanical Engineering, Kyung Hee University, Yongin, Gyeonggi-do, Republic of Korea
| | | | | |
Collapse
|
20
|
Relationships between biomechanics, tendon pathology, and function in individuals with lateral epicondylosis. J Orthop Sports Phys Ther 2013; 43:368-78. [PMID: 23508267 PMCID: PMC3738021 DOI: 10.2519/jospt.2013.4411] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN Single-cohort descriptive and correlational study. OBJECTIVES To investigate the relationships between tendon pathology, biomechanical measures, and self-reported pain and function in individuals with chronic lateral epicondylosis. BACKGROUND Lateral epicondylosis has a multifactorial etiology and its pathophysiology is not well understood. Consequently, treatment remains challenging, and lateral epicondylosis is prone to recurrence. While tendon pathology, pain system changes, and motor impairments due to lateral epicondylosis are considered related, their relationships have not been thoroughly investigated. METHODS Twenty-six participants with either unilateral (n = 11) or bilateral (n = 15) chronic lateral epicondylosis participated in this study. Biomechanical measures (grip strength, rate of force development, and electromechanical delay) and measures of tendon pathology (magnetic resonance imaging and ultrasound) and self-reported pain and function (Patient-Rated Tennis Elbow Evaluation) were performed. Partial Spearman correlations, adjusting for covariates (age, gender, weight, and height), were used to evaluate the relationship between self-reported pain, function, and biomechanical and tendon pathology measures. RESULTS Statistically significant correlations between biomechanical measures and the Patient-Rated Tennis Elbow Evaluation ranged in magnitude from 0.44 to 0.68 (P<.05); however, no significant correlation was observed between tendon pathology (magnetic resonance imaging and ultrasound) measures and the Patient-Rated Tennis Elbow Evaluation (r = -0.02 to 0.31, P>.05). Rate of force development had a stronger correlation (r = 0.54-0.68, P<.05) with self-reported function score than with grip strength (r = 0.35-0.47, P<.05) or electromechanical delay (r = 0.5, P<.05). CONCLUSION Biomechanical measures (pain-free grip strength, rate of force development, electromechanical delay) have the potential to be used as outcome measures to monitor progress in lateral epicondylosis. In comparison, the imaging measures (magnetic resonance imaging and ultrasound) were useful for visualizing the pathophysiology of lateral epicondylosis. However, the severity of the pathophysiology was not related to pain and function, indicating that imaging measures may not provide the best clinical assessment.
Collapse
|
21
|
Abstract
This study aimed to estimate the efficacy of inertial training in older women using the Inertial Training and Measurement System (ITMS), an original device. Forty-five active women age 53-74 yr performed inertial training with 2 different loads (0 or 5 kg) 3 times weekly for 4 wk. Training sessions consisted of exercises involving the shoulder muscles of the dominant and nondominant arms. The maximal torque and power developed by the dominant and nondominant arms in the 0-kg and 5-kg groups were significantly greater after 4 wk of inertial training (with the exception of torque for the nondominant arm in the 5-kg group; p > .05). Thus, short-term training using the ITMS is efficacious and can be used in older women to improve strength and power. However, ITMS training-induced changes in older women are greater after application of smaller external loads.
Collapse
|
22
|
Effects of Strength and Power Training on Neuromuscular Variables in Older Adults. J Aging Phys Act 2012; 20:171-85. [DOI: 10.1123/japa.20.2.171] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to compare the neuromuscular adaptations produced by strength-training (ST) and power-training (PT) regimens in older individuals. Participants were balanced by quadriceps cross-sectional area (CSA) and leg-press 1-repetition maximum and randomly assigned to an ST group (n= 14; 63.6 ± 4.0 yr, 79.7 ± 17.2 kg, and 163.9 ± 9.8 cm), a PT group (n= 16; 64.9 ± 3.9 yr, 63.9 ± 11.9 kg, and 157.4 ± 7.7 cm), or a control group (n= 13; 63.0 ± 4.0 yr, 67.2 ± 10.8 kg, and 159.8 ± 6.8 cm). ST and PT were equally effective in increasing (a) maximum dynamic and isometric strength (p< .05), (b) increasing quadriceps muscle CSA (p< .05), and (c) decreasing electrical mechanical delay of the vastus lateralis muscle (p< .05). There were no significant changes in neuromuscular activation after training. The novel finding of the current study is that PT seems to be an attractive alternative to regular ST to maintain and improve muscle mass.
Collapse
|
23
|
Fat mass limits lower-extremity relative strength and maximal walking performance in older women. J Electromyogr Kinesiol 2011; 21:754-61. [PMID: 21824789 DOI: 10.1016/j.jelekin.2011.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 06/15/2011] [Accepted: 07/11/2011] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to determine if excess fat negatively affects relative strength and walking gait performance in overweight, older women. Twenty-five older women (65-80 yr) were separated into normal weight (BMI<25 kg m(-2), n=11) and overweight groups (BMI 25 ≥ kg m(-2), n=14). Strength and rate of torque development (RTD) of the knee extensors and flexors, ankle plantarflexors and dorsiflexors were measured. Participants walked at standard and maximal speeds during which muscle activation, spatiotemporal and kinetic gait variables were measured. Relative to mass, overweight older women had 24% lower maximal torque and 38% lower RTD than normal weight women. Maximal walking speed was slower in overweight (1.25±0.22 vs. 1.54±0.25 m s(-1), P=0.004) and was correlated to strength (r=0.53, P<0.01) and fat mass (r=-0.65, P=0.001). At maximal speed, overweight had 11% lower vertical ground reaction force relative to mass, 8% slower stride rate, 12% shorter strides, 13% longer foot-ground contact times, 21% longer double-limb support times, 65% greater knee extensor and 78% greater plantarflexor activation (P<0.05). Overweight, older women demonstrated altered gait and reduced walking performance related to poor relative strength and rate of torque development of lower-extremity muscles.
Collapse
|
24
|
Stair-Ascent Performance in Elderly Women: Effect of Explosive Strength Training. J Aging Phys Act 2011; 19:117-36. [DOI: 10.1123/japa.19.2.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Explosive-type strength training may alter kinetics and neuromuscular activity during stair ascent in elderly women. This may improve functional ability. Nineteen women (69.7 ± 3.4 yr) were randomly allocated to strength training (TG; twice per wk, 12 wk) or a control group (CG). Stair ascent was assessed at self-chosen (AFV), standardized (ASV), and maximal velocity (AMV) pre- and posttraining. Ground-reaction force (GRF) and EMG quantified kinetics and neuromuscular activity. After training, TG increased AMV and AFV velocity by 8% (p= .02) and 17% (p= .007), respectively (TG vs.CG; p< .05). This was accompanied by elevated rectus femoris EMG (from 21% to 48%,p< .047). At AFV, TG increased GRF first peak force 4% (p= .047), and CG increased second peak force 5% (p= .036). Muscle coactivation remained unaltered in both groups. Explosive-type strength training led to enhanced stair-climbing performance at maximal and self-chosen speed, reflecting an improved functional ability.
Collapse
|
25
|
Kim JW, Kwon Y, Chung HY, Eom GM, Jun JH, Chung JS, Park BK. Age-sex differences in the hip abductor muscle properties. Geriatr Gerontol Int 2011; 11:333-40. [PMID: 21410857 DOI: 10.1111/j.1447-0594.2011.00693.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Elderly women are reported to have worse postural balance in the mediolateral direction than elderly men, which may be related to hip lateral muscle properties. The purpose of this study was to investigate the effects of sex, age and their interactions on hip abductor muscle properties. METHODS Thirty elderly and 30 young healthy subjects were recruited in this study. Subjects were instructed to abduct their leg as forcefully and quickly as possible under isometric condition, in response to audible beeps. Electromyogram was measured on the gluteus medius muscle and abduction torque was measured. Investigated muscle properties included torque amplitudes and muscle contraction timings. Muscle contraction timings were designated as premotor time, electromechanical delay and total reaction time. The effects of sex, age and their interactions on muscle properties were analyzed. RESULTS Women showed smaller torque amplitudes, longer electromechanical delay and longer total reaction time than men (P < 0.01), whereas no sex difference was observed in association with premotor time (P = 0.15). Age-sex interaction was significant in torque amplitudes and in electromechanical delay (P < 0.01). Post-hoc test revealed that torque amplitude differed between sexes only in the young (P < 0.001). In contrast, the electromechanical delay differed between sexes only in the elderly and the age-related elongation of electromechanical delay was significant only in women (P < 0.001). CONCLUSION Both a sex difference and a sex difference of age-related change in hip abductor muscle properties were demonstrated. These sex differences may contribute to the sex difference in lateral balance performance.
Collapse
Affiliation(s)
- Ji-Won Kim
- School of Biomedical Engineering, Konkuk University, 322 Danwol-dong, Choonju, Choonbuk 380-701, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Strasser B, Keinrad M, Haber P, Schobersberger W. Efficacy of systematic endurance and resistance training on muscle strength and endurance performance in elderly adults--a randomized controlled trial. Wien Klin Wochenschr 2010; 121:757-64. [PMID: 20047114 DOI: 10.1007/s00508-009-1273-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 10/19/2009] [Indexed: 12/25/2022]
Abstract
BACKGROUND Aging is associated with loss in both muscle mass and the metabolic quality of skeletal muscle. A major part of these changes is associated with an age-related decrease in the level of physical activity and may be counteracted by endurance training (ET) and resistance training (RT). OBJECTIVE Since both muscle strength and aerobic power decrease with age, we investigated what form of training might be best for improvements in physical performance in the elderly. In detail, we wanted to know whether systematic ET can augment muscle strength and/or whether systematic RT can augment the aerobic power of healthy elderly adults. METHODS Forty-two volunteers (32 women, 10 men) were recruited for the study and randomized into three groups: 13 persons undertook a continuous 6-month ET program, 15 undertook a continuous 6-month RT program and 14 served as a control group. All persons performed a cycling test to measure aerobic power (VO(2max)) and maximum workload (W(max)) before and after the training period. Maximum strength was determined from one repetition maximum (1-RM). RESULTS After 6 months of RT, maximum strength increased by an average of 15% for leg press (P < 0.01), 25% for bench press (P < 0.01) and 30% for bench pull (P < 0.001); ET showed no effect on maximum strength except for the 1-RM in bench pull. Aerobic power improved by 6% in the ET group and by 2.5% in the RT group, neither of which was significant. Maximum workload improved significantly by 31% in the ET group (P < 0.001) and by 6% in the RT group (P = 0.05). ET resulted in a significant 5.3% reduction of body fat (P < 0.05), whereas only RT increased lean body mass by 1.0 +/- 0.5 kg. CONCLUSION RT leads to a genuine increase in lean body mass and muscle strength in healthy elderly adults and is therefore the best method for treatment of amyotrophia. ET appears to be the most efficacious training mode for maintaining and improving maximum aerobic power in the elderly and should be viewed as a complement to RT. The loading intensity to promote hypertrophy should approach 60-80% of 1-RM with an exercise volume ranging from 3 to 6 sets per muscle group per week of 10-15 repetitions per exercise. ET should be performed on two days per week controlled by a heart rate according to 60% of VO(2max) and an exercise volume ranging from 30 to 60 minutes per week.
Collapse
Affiliation(s)
- Barbara Strasser
- Institute for Sports-, Alpine Medicine and Health Tourism, University for Health Sciences, Medical Informatics and Technology, Hall i. T., Austria.
| | | | | | | |
Collapse
|
27
|
Rapid torque development in older female fallers and nonfallers: a comparison across lower-extremity muscles. J Electromyogr Kinesiol 2009; 20:482-8. [PMID: 19782579 DOI: 10.1016/j.jelekin.2009.08.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/14/2009] [Accepted: 08/13/2009] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to compare reaction time, joint torque, rate of torque development, and magnitude of neuromuscular activation of lower-extremity muscles in elderly female fallers and nonfallers. Participants included 11, elderly, female fallers (71.3+/-5.4 years) and twelve nonfallers (71.3+/-6.2 years) who completed a fall risk questionnaire. Then, maximal, voluntary, isometric contractions of the knee and ankle muscles were performed in reaction to a visual cue to determine joint torque, rate of torque development, reaction time, and nervous activation of agonists and antagonists. Results indicated that significantly more fallers reported "dizziness upon rising", "use of balance altering medications", "stress or depression", "not enough sleep", "arthritis in lower body", "chronic pain in lower body", and "tiring easily while walking" (all P<0.05). Normalized dorsiflexion and plantarflexion strength scores (summation of peak torque, rate of torque development and impulse) were lower in fallers than in nonfallers (P<0.05). When summed across lower-extremity muscle groups, fallers demonstrated 19% lower peak torque and 29% longer motor time (P<0.05). In conclusion, comprehensive fall risk screening and prevention programs should address both neuromuscular and non-muscular factors, and, weakness of the ankle dorsiflexors and plantarflexors should be further studied as potential contributors to falls in older adults.
Collapse
|