1
|
Mechanical Stretch Promotes Macrophage Polarization and Inflammation via the RhoA-ROCK/NF-κB Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6871269. [PMID: 35915804 PMCID: PMC9338847 DOI: 10.1155/2022/6871269] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/17/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
Abstract
Macrophages play an essential role in the pathogenesis of most inflammatory diseases. Recent studies have shown that mechanical load can influence macrophage function, leading to excessive and uncontrolled inflammation and even systemic damage, including cardiovascular disease and knee osteoarthritis. However, the molecular mechanism remains unclear. In this study, murine RAW264.7 cells were treated with mechanical stretch (MS) using the Flexcell-5000T Tension System. The expression of inflammatory factors and cytokine release were measured by RT-qPCR, ELISA, and Western blotting. The protein expression of NF-κB p65, Iκb-α, p-Iκb-α, RhoA, ROCK1, and ROCK2 was also detected by Western blotting. Then, Flow cytometry was used to detect the proportion of macrophage subsets. Meanwhile, Y-27632 dihydrochloride, a ROCK inhibitor, was added to knockdown ROCK signal transduction in cells. Our results demonstrated that MS upregulated mRNA expression and increased the secretion levels of proinflammatory factors iNOS, IL-1β, TNF-α, and IL-6. Additionally, MS significantly increased the proportion of CD11b+CD86+ and CD11b+CD206+ subsets in RAW264.7 macrophages. Furthermore, the protein expression of RhoA, ROCK1, ROCK2, NF-κB p65, and IκB-α increased in MS-treated RAW264.7 cells, as well as the IL-6 and iNOS. In contrast, ROCK inhibitor significantly blocked the activation of RhoA-ROCK and NF-κB pathway, decreased the protein expression of IL-6 and iNOS, reduced the proportion of CD11b+CD86+ cells subpopulation, and increased the proportion of CD11b+CD206+ cell subpopulation after MS. These data indicate that mechanical stretch can regulate the RAW264.7 macrophage polarization and enhance inflammatory responses in vitro, which may contribute to activation the RhoA-ROCK/NF-κB pathway.
Collapse
|
2
|
Chen CW, Kuo YC, How CK, Juan CC. Long-term aerobic exercise training-induced anti-inflammatory response and mechanisms: Focusing on the toll-like receptor 4 signaling pathway. CHINESE J PHYSIOL 2021; 63:250-255. [PMID: 33380609 DOI: 10.4103/cjp.cjp_78_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Toll-like receptor 4 (TLR-4), which regulate inflammatory reactions, has become a popular research topic in recent years. This article reviews the latest scientific evidence on the regulation of TLR-4 by regular aerobic exercise training. The literature shows that long-term regular aerobic exercise training can effectively attenuate the expression of TLR-4 in immune cells and regulate its downstream intracellular cascade, including the p38 and PI3K/Akt signaling pathways. This further reduces cytokines secretion by inflammatory cells, which enhances immune system. We consider that the scientific evidence that long-term aerobic exercise training improves the inflammatory response provides a reasonable basis for using aerobic exercise training as a treatment for patients.
Collapse
Affiliation(s)
- Chien-Wei Chen
- College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Yu-Chi Kuo
- College of Human Development and Health; Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chorng-Kuang How
- Department of Emergency, Taipei Veterans General Hospital; Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei; Kinmen Hospital, Ministry of Health and Welfare, Kinmen, Taiwan
| | - Chi-Chang Juan
- Department of Physiology, School of Medicine, National Yang-Ming University; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Rentz T, Wanschel ACBA, de Carvalho Moi L, Lorza-Gil E, de Souza JC, Dos Santos RR, Oliveira HCF. The Anti-atherogenic Role of Exercise Is Associated With the Attenuation of Bone Marrow-Derived Macrophage Activation and Migration in Hypercholesterolemic Mice. Front Physiol 2020; 11:599379. [PMID: 33329050 PMCID: PMC7719785 DOI: 10.3389/fphys.2020.599379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
An early event in atherogenesis is the recruitment and infiltration of circulating monocytes and macrophage activation in the subendothelial space. Atherosclerosis subsequently progresses as a unresolved inflammatory disease, particularly in hypercholesterolemic conditions. Although physical exercise training has been a widely accepted strategy to inhibit atherosclerosis, its impact on arterial wall inflammation and macrophage phenotype and function has not yet been directly evaluated. Thus, the aim of this study was to investigate the effects of aerobic exercise training on the inflammatory state of atherosclerotic lesions with a focus on macrophages. Hypercholesterolemic LDL-receptor-deficient male mice were subjected to treadmill training for 8 weeks and fed a high-fat diet. Analyses included plasma lipoprotein and cytokine levels; aortic root staining for lipids (oil red O); macrophages (CD68, MCP1 and IL1β); oxidative (nitrotyrosine and, DHE) and endoplasmic reticulum (GADD) stress markers. Primary bone marrow-derived macrophages (BMDM) were assayed for migration activity, motility phenotype (Rac1 and F-actin) and inflammation-related gene expression. Plasma levels of HDL cholesterol were increased, while levels of proinflammatory cytokines (TNFa, IL1b, and IL6) were markedly reduced in the exercised mice. The exercised mice developed lower levels of lipid content and inflammation in atherosclerotic plaques. Additionally, lesions in the exercised mice had lower levels of oxidative and ER stress markers. BMDM isolated from the exercised mice showed a marked reduction in proinflammatory cytokine gene expression and migratory activity and a disrupted motility phenotype. More importantly, bone marrow from exercised mice transplanted into sedentary mice led to reduced atherosclerosis in the recipient sedentary mice, thus suggesting that epigenetic mechanisms are associated with exercise. Collectively, the presented data indicate that exercise training prevents atherosclerosis by inhibiting bone marrow-derived macrophage recruitment and activation.
Collapse
Affiliation(s)
- Thiago Rentz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Amarylis C B A Wanschel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Leonardo de Carvalho Moi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Estela Lorza-Gil
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Jane C de Souza
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Renata R Dos Santos
- Division of Radiotherapy, Faculty of Medical Sciences, Medical School Hospital, State University of Campinas, Campinas, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
4
|
Scheffer DDL, Latini A. Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165823. [PMID: 32360589 PMCID: PMC7188661 DOI: 10.1016/j.bbadis.2020.165823] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/07/2020] [Accepted: 04/25/2020] [Indexed: 12/13/2022]
Abstract
A wide array of molecular pathways has been investigated during the past decade in order to understand the mechanisms by which the practice of physical exercise promotes neuroprotection and reduces the risk of developing communicable and non-communicable chronic diseases. While a single session of physical exercise may represent a challenge for cell homeostasis, repeated physical exercise sessions will improve immunosurveillance and immunocompetence. Additionally, immune cells from the central nervous system will acquire an anti-inflammatory phenotype, protecting central functions from age-induced cognitive decline. This review highlights the exercise-induced anti-inflammatory effect on the prevention or treatment of common chronic clinical and experimental settings. It also suggests the use of pterins in biological fluids as sensitive biomarkers to follow the anti-inflammatory effect of physical exercise.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
5
|
Kim D, Kang H. Exercise training modifies gut microbiota with attenuated host responses to sepsis in wild-type mice. FASEB J 2019; 33:5772-5781. [PMID: 30702933 DOI: 10.1096/fj.201802481r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study investigated the effects of exercise preconditioning-induced modification in gut microbiota composition and host responses to cecal ligation and puncture (CLP)-induced sepsis. Four-week-old C57BL/6N male mice were randomly assigned to either CLP ( n = 30) or CLP-exercise (CLP+Exe; n = 30) groups. Prior to CLP-induced sepsis, the CLP+Exe mice were subjected to 8 wk of treadmill running. Fecal samples were collected and analyzed by 16S rRNA amplification sequencing to assess gut microbiota composition. Diversity analyses such as principal coordinates analysis and rarefaction curves showed that exercise preconditioning was associated with differences in gut microbiota community structure and species richness. Exercise preconditioning-induced differences in gut microbiota composition were also evident at the family level of taxonomic analysis, with the dominant phyla being Bacteriodetes, Firmicutes, Verrucomicrobia, and, to a lesser extent, Cyanobacteria. Compared with control mice, preconditioned mice had a higher survival rate and less organ damage during the acute phase of sepsis, secondary to attenuation of the host response to septic shock. The current findings suggest that exercise preconditioning-induced modification in gut microbiota composition may lead to an attenuated host response to CLP-induced sepsis in wild-type mice, as shown by increased survival and less organ damage, as well as the establishment of a balance between pro- and anti-inflammatory responses.-Kim, D., Kang, H. Exercise training modifies gut microbiota with attenuated host responses to sepsis in wild-type mice.
Collapse
Affiliation(s)
- Donghyun Kim
- College of Sport Science, Sungkyunkwan University, Suwon, South Korea
| | - Hyunsik Kang
- College of Sport Science, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
6
|
Silveira LS, Batatinha HAP, Castoldi A, Câmara NOS, Festuccia WT, Souza CO, Rosa Neto JC, Lira FS. Exercise rescues the immune response fine-tuned impaired by peroxisome proliferator-activated receptors γ deletion in macrophages. J Cell Physiol 2018; 234:5241-5251. [PMID: 30238979 DOI: 10.1002/jcp.27333] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/10/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Exercise is a powerful tool for prevention and treatment of many conditions related to the cardiovascular system and also chronic low-grade inflammation. Peroxisome proliferator-activated receptors γ (PPARγ) exerts an import role on the regulation of metabolic profile and subsequent inflammatory response, especially in macrophages. PURPOSE To investigate the effects of 8-week moderate-exercise training on metabolic and inflammatory parameters in mice with PPARγ deficiency in myeloid cells. METHODS Twelve-week old mice bearing PPARγ deletion exclusively in myeloid cells (PPARγlox/lox Lys Cre -/+ , knockout [KO]) and littermate controls (PPARγlox/lox Lys Cre -/- , wild type [WT]) were submitted to 8-week exercise training (treadmill running at moderate intensity, 5 days/week). Animals were evaluated for food intake, glucose homeostasis, serum metabolites, adipose tissue and peritoneal macrophage inflammation, and basal and stimulated cytokine secretion. RESULTS Exercise protocol did not improve glucose metabolism or adiponectin concentrations in serum of KO mice. Moreover, the absence of PPARγ in macrophages exacerbated the proinflammatory profile in sedentary mice. Peritoneal cultured cells had higher tumor necrosis factor-α (TNF-α) secretion in nonstimulated and lipopolysaccharide (LPS)-stimulated conditions and higher Toll-4 receptor (TLR4) gene expression under LPS stimulus. Trained mice showed reduced TNF-α content in adipose tissue independently of the genotype. M2 polarization ability was impaired in KO peritoneal macrophages after exercise training, while adipose tissue-associated macrophages did not present any effect by PPARγ ablation. CONCLUSION Overall, PPARγ seems necessary to maintain macrophages appropriate response to inflammatory stimulus and macrophage polarization, affecting also whole body lipid metabolism and adiponectin profile. Exercise training showed as an efficient mechanism to restore the immune response impaired by PPARγ deletion in macrophages.
Collapse
Affiliation(s)
- Loreana Sanches Silveira
- Department of Physical Education, Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Sao Paulo State University (UNESP), São Paulo, Brazil.,Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | | | - Angela Castoldi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Willian T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camila Oliveira Souza
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - José Cesar Rosa Neto
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fábio Santos Lira
- Department of Physical Education, Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Sao Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
7
|
Silveira LS, Pimentel GD, Souza CO, Biondo LA, Teixeira AAS, Lima EA, Batatinha HAP, Rosa Neto JC, Lira FS. Effect of an acute moderate-exercise session on metabolic and inflammatory profile of PPAR-α knockout mice. Cell Biochem Funct 2017; 35:510-517. [DOI: 10.1002/cbf.3308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/23/2017] [Accepted: 09/17/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Loreana S. Silveira
- Exercise and Immunometabolism Research Group, Department of Physical Education; Universidade Estadual Paulista; Presidente Prudente SP Brazil
| | - Gustavo D. Pimentel
- Clinical and Sports Nutrition Research Laboratory (Labince); Nutrition Faculty (FANUT)-Federal University of Goiás (UFG); Goiânia GO Brazil
| | - Camila O. Souza
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Luana A. Biondo
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Alexandre Abílio S. Teixeira
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Edson A. Lima
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Helena A. P. Batatinha
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - José C. Rosa Neto
- Immunometabolism Research Group, Institute of Biomedical Sciences; University of São Paulo (USP); São Paulo SP Brazil
| | - Fábio S. Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education; Universidade Estadual Paulista; Presidente Prudente SP Brazil
| |
Collapse
|
8
|
Chen MF, Weng KF, Huang SY, Liu YC, Tseng SN, Ojcius DM, Shih SR. Pretreatment with a heat-killed probiotic modulates monocyte chemoattractant protein-1 and reduces the pathogenicity of influenza and enterovirus 71 infections. Mucosal Immunol 2017; 10:215-227. [PMID: 27072606 DOI: 10.1038/mi.2016.31] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/29/2016] [Indexed: 02/04/2023]
Abstract
It has been proposed that inactivated probiotics may modulate the host immune system and contribute to mitigation of viral infections. This study demonstrated that administration of heat-killed Enterococcus faecalis, a widely used probiotic, can protect host animals against viral infections. The influenza-mediated morbidity and lung inflammation in E. faecalis-treated mice decreased significantly compared with those of the control mice. Furthermore, we found that the protection is associated with production of monocyte chemoattractant protein-1 (MCP-1). The intratracheal injection of a recombinant mouse MCP-1 protein abrogated the antiviral effects elicited by pretreatment with E. faecalis. CC chemokine receptor 2 (CCR2) is a receptor for MCP-1, and the intraperitoneal administration of a CCR2 antagonist effectively inhibited viral pathogenicity. The reduced pathogenicity was also observed in CCR2-deficient mice. Finally, E. faecalis significantly attenuated neuropathogenicity induced by another RNA virus, enterovirus 71. This study demonstrates that killed probiotics can reduce viral disease severity and identify that the MCP-1 pathway might act as a key mediator in the improved antiviral immune response. Our findings suggest that MCP-1 and its related signaling pathway can serve as critical therapeutic targets for development of new antiviral strategies.
Collapse
Affiliation(s)
- M-F Chen
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - K-F Weng
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - S-Y Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Y-C Liu
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - S-N Tseng
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - D M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Tao-Yuan, Taiwan, ROC.,Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, California, USA
| | - S-R Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan, ROC.,Graduate Institute of Biomedical Sciences, Chang Gung University, Tao-Yuan, Taiwan, ROC.,Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan, ROC.,Clinical Virology Laboratory, Department of Clinical Pathology, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan, ROC
| |
Collapse
|
9
|
Chen CW, Chen CC, Jian CY, Lin PH, Chou JC, Teng HS, Hu S, Lieu FK, Wang PS, Wang SW. Attenuation of exercise effect on inflammatory responses via novel role of TLR4/PI3K/Akt signaling in rat splenocytes. J Appl Physiol (1985) 2016; 121:870-877. [PMID: 27539497 DOI: 10.1152/japplphysiol.00393.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/16/2016] [Indexed: 01/07/2023] Open
Abstract
Moderate exercise diminishes proinflammation cytokine production in various types of immune cells, but the intracellular signaling pathways involved are not completely understood. Phosphoinositide 3-kinase (PI3K)/Akt, a crucial downstream protein of toll-like receptor 4 (TLR4), may modulate inflammation. The present study aimed to investigate the effects of exercises on lipopolysaccharide (LPS)-stimulated inflammatory response in splenocytes and to explore potential mechanisms of the PI3K/Akt pathway. Male rats were divided into sedentary and exercise groups. Animals in the exercise group underwent endurance training 30 min/day, 7 days/wk, at the speed of 20 m/min on a treadmill for 1 wk. Here, we showed that exercise 1) attenuated TLR4, 2) increased PI3K/phospho-Akt (p-Akt), and 3) diminished phospho-nuclear factor-κB (p-NF-κB) expression. In addition, administration of splenocytes isolated from trained rats with LPS in vitro showed 1) reduced tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and nitric oxide secretion and 2) decreased splenocyte proliferation. The plasma corticosterone (CCS) level in the exercise group was higher than that in the sedentary group. We confirmed that CCS down-regulated TNF-α and IL-6 secretion in response to LPS in rat splenocytes. Dexamethasone also significantly attenuated LPS-evoked release of TNF-α and IL-6 in a dose-dependent manner. These findings suggested that exercise dampened the secretion of inflammation mediators probably through partial inhibition of TLR4 and p-NF-κB and activation of PI3K/p-Akt expression in the spleen.
Collapse
Affiliation(s)
- Chien-Wei Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chieh Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Cai-Yun Jian
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Han Lin
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jou-Chun Chou
- Medical Center of Aging Research, China Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Su Teng
- Department of Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Kong Lieu
- Department of Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Paulus S. Wang
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Medical Center of Aging Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; and
| | - Shyi-Wu Wang
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
10
|
Wiskemann J, Hummler S, Diepold C, Keil M, Abel U, Steindorf K, Beckhove P, Ulrich CM, Steins M, Thomas M. POSITIVE study: physical exercise program in non-operable lung cancer patients undergoing palliative treatment. BMC Cancer 2016; 16:499. [PMID: 27430336 PMCID: PMC4949758 DOI: 10.1186/s12885-016-2561-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/14/2016] [Indexed: 11/24/2022] Open
Abstract
Background Patients with advanced stage non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) often experience multidimensional impairments, affecting quality of life during their course of disease. In lung cancer patients with operable disease, several studies have shown that exercise has a positive impact on quality of life and physical functioning. There is limited evidence regarding efficacy for advanced lung cancer patients undergoing palliative treatment. Therefore, the POSITIVE study aims to evaluate the benefit of a 24-week exercise intervention during palliative treatment in a randomized controlled setting. Methods/design The POSITIVE study is a randomized, controlled trial investigating the effects of a 24-week exercise intervention during palliative treatment on quality of life, physical performance and immune function in advanced, non-operable lung cancer patients. 250 patients will be recruited in the Clinic for Thoracic Diseases in Heidelberg, enrolment begun in November 2013. Main inclusion criterion is histologically confirmed NSCLC (stage IIIa, IIIb, IV) or SCLC (Limited Disease-SCLC, Extensive Disease-SCLC) not amenable to surgery. Patients are randomized into two groups. Both groups receive weekly care management phone calls (CMPCs) with the goal to assess symptoms and side effects. Additionally, one group receives a combined resistance and endurance training (3x/week). Primary endpoints are quality of life assessed by the Functional Assessment of Cancer Therapy for patients with lung cancer (FACT-L, subcategory Physical Well-Being) and General Fatigue measured by the Multidimensional Fatigue Inventory (MFI-20). Secondary endpoints are physical performance (maximal voluntary isometric contraction, 6-min walk distance), psychosocial (depression and anxiety) and immunological parameters and overall survival. Discussion The aim of the POSITIVE trial is the evaluation of effects of a 24-week structured and guided exercise intervention during palliative treatment stages. Analysis of various outcomes (such as quality of life, physical performance, self-efficacy, psychosocial and immunological parameters) will contribute to a better understanding of the potential of exercise in advanced lung cancer patients. In contrast to other studies with advanced oncological patients the POSITIVE trial provides weekly phone calls to support patients both in the intervention and control group and to segregate the impact of physical activity on quality of life. Trial registration ClinicalTrials.gov NCT02055508 (Date: December 12, 2013)
Collapse
Affiliation(s)
- Joachim Wiskemann
- Working Group Exercise Oncology, Division of Medical Oncology, National Center for Tumor Diseases (NCT) and University Clinic Heidelberg, Heidelberg, Germany. .,National Center for Tumor Diseases (NCT) and German Cancer Research Center, Heidelberg, Germany.
| | - Simone Hummler
- Clinic for Thoracic Diseases, Department of Oncology, Thoraxklinik am Universitätsklinikum, Heidelberg, Germany.,Clinic for Thoracic Diseases, Department of Pneumology and Intensive Care Unit, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christina Diepold
- National Center for Tumor Diseases (NCT) and German Cancer Research Center, Heidelberg, Germany
| | - Melanie Keil
- Immune Monitoring Unit (G808), National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,CCU Neuroimmunology and Brain Tumor Immunology, National Center for Tumor Diseases, (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrich Abel
- National Center for Tumor Diseases (NCT) and German Cancer Research Center, Heidelberg, Germany
| | - Karen Steindorf
- National Center for Tumor Diseases (NCT) and German Cancer Research Center, Heidelberg, Germany
| | - Philipp Beckhove
- National Center for Tumor Diseases (NCT) and German Cancer Research Center, Heidelberg, Germany
| | | | - Martin Steins
- Clinic for Thoracic Diseases, Department of Oncology, Thoraxklinik am Universitätsklinikum, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Thomas
- Clinic for Thoracic Diseases, Department of Oncology, Thoraxklinik am Universitätsklinikum, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
11
|
Chen CW, Jian CY, Lin PH, Chen CC, Lieu FK, Soong C, Hsieh CC, Wan CY, Idova G, Hu S, Wang SW, Wang PS. Role of testosterone in regulating induction of TNF-α in rat spleen via ERK signaling pathway. Steroids 2016; 111:148-154. [PMID: 26996389 DOI: 10.1016/j.steroids.2016.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 02/06/2023]
Abstract
Spleen is a pivotal organ for regulating immune homeostasis. It has been shown that testosterone diminishes secretion of various inflammatory molecules under multiple conditions. However, the mechanisms of action of endogenous testosterone affecting immune responses in the spleen remain unknown. The aim of the present study was to evaluate the immune functions of the spleen in response to testosterone withdrawal after orchidectomy, and the impact of splenocytes on the bacterial endotoxin lipopolysaccharide (LPS)-induced secretion of inflammatory molecules. Male rats were divided into 3 groups, i.e. intact, orchidectomized (Orch) and orchidectomized plus replacement of testosterone propionate (TP) (Orch+TP). The Orch and Orch+TP rats underwent bilateral orchidectomy one week before TP replacement (2mg/kg body weight) or sesame oil in intact rats as controls for seven days. Orch resulted in a significant increase of spleen weight and basal secretion of nitric oxide (NO) from splenocytes. Additionally, LPS up-regulated cell proliferation and the secretion of tumor necrosis factor-alpha (TNF-α) in splenocytes of Orch rats. Orch further up-regulated phosphorylation of extracellular signal-regulated kinases. Interestingly, the plasma corticosterone concentration in the Orch group was higher than that in the intact and Orch+TP groups. Deficiency of testosterone-elevated TNF-α and NO secretion in response to LPS were confirmed in the rat splenocytes. Testosterone also significantly attenuated LPS-elicited release of TNF-α and NO in a dose-dependent manner. However, testosterone did not suppress splenic blastogenesis at doses in the 10(-10)-10(-7)M concentration range. In this context, testosterone might have a protective role against inflammatory responses in the spleen. The present study provides evidence to indicate that testosterone might modulate the immune system.
Collapse
Affiliation(s)
- Chien-Wei Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Cai-Yun Jian
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Po-Han Lin
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chih-Chieh Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Fu-Kong Lieu
- Department of Rehabilitation, Cheng Hsin General Hospital, Taipei 11280, Taiwan
| | - Christina Soong
- Department of Rehabilitation, Cheng Hsin General Hospital, Taipei 11280, Taiwan
| | - Chu-Chun Hsieh
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chi-Yun Wan
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Galina Idova
- State Scientific Research Institute of Physiology and Basic Medicine, Timakova Street, 4, Novosibirsk 630117, Russia
| | - Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shyi-Wu Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan.
| | - Paulus S Wang
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; Medical Center of Aging Research, China Medical University Hospital, Taichung 40402, Taiwan; Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| |
Collapse
|
12
|
Chen MF, Huang TY, Kuo YM, Yu L, Chen HI, Jen CJ. Early postinjury exercise reverses memory deficits and retards the progression of closed-head injury in mice. J Physiol 2012. [PMID: 23184513 DOI: 10.1113/jphysiol.2012.241125] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Closed-head injury (CHI) usually involves both physical damage of neurons and neuroinflammation. Although exercise promotes neuronal repair and suppresses neuroinflammation, CHI patients currently often remain resting during the post-traumatic period. This study aimed to investigate whether and how postinjury exercise benefited the brain structure and function in mice after CHI. Closed-head injury immediately caused an elevated neurological severity score, with rapid loss of object recognition memory, followed by progressive location-dependent brain damage (neuronal loss and activation of microglia in the cortex and hippocampus). An early exercise protocol at moderate intensity (starting 2 days postimpact and lasting for 7 or 14 days) effectively restored the object recognition memory and prevented the progressive neuronal loss and activation of microglia. However, if the exercise started 9 days postimpact, it was unable to recover recognition memory deficits. In parallel, early exercise intervention drastically promoted neurite regeneration, while late exercise intervention was much less effective. We also tested the possible involvement of brain-derived neurotrophic factor (BDNF) and mitogen-activated protein kinase phosphatase-1 (MKP-1) in the exercise-induced beneficial effects. Exercise gradually restored the impact-abolished hippocampal expression of BDNF and MPK-1, while oral administration of triptolide (a synthesis inhibitor of MKP-1 and an antagonist of nuclear factor-B) before each bout of exercise blocked the restorative effects of exercise on MKP-1 and recognition memory, as well as the exercise-induced retardation of neuronal loss. Although triptolide treatment alone inhibited activation of microglia and maintained neuronal numbers, it did not recover the injury-hampered recognition memory. Overall, moderate exercise shortly after CHI reversed the deficits in recognition memory and prevented the progression of brain injury.
Collapse
Affiliation(s)
- Mei-Feng Chen
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
13
|
Eyre H, Baune BT. Neuroimmunological effects of physical exercise in depression. Brain Behav Immun 2012; 26:251-66. [PMID: 21986304 DOI: 10.1016/j.bbi.2011.09.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 02/06/2023] Open
Abstract
The search for an extended understanding of the causes of depression, and for the development of additional effective treatments is highly significant. Clinical and pre-clinical studies suggest stress is a key mediator in the pathophysiology of depression. Exercise is a readily available therapeutic option, effective as a first-line treatment in mild to moderate depression. In pre-clinical models exercise attenuates stress-related depression-like behaviours. Cellular and humoral neuroimmune mechanisms beyond inflammation and oxidative stress are highly significant in understanding depression pathogenesis. The effects of exercise on such mechanisms are unclear. When clinical and pre-clinical data is taken together, exercise may reduce inflammation and oxidation stress via a multitude of cellular and humoral neuroimmune changes. Astrocytes, microglia and T cells have an antiinflammatory and neuroprotective functions via a variety of mechanisms. It is unknown whether exercise has effects on specific neuroimmune markers implicated in the pathogenesis of depression such as markers of immunosenescence, B or T cell reactivity, astrocyte populations, self-specific CD4+ T cells, T helper 17 cells or T regulatory cells.
Collapse
Affiliation(s)
- Harris Eyre
- Psychiatry and Psychiatric Neuroscience Research Group, School of Medicine and Dentistry, James Cook University, 101 Angus Smith Drive, Townsville, Queensland 4811, Australia
| | | |
Collapse
|
14
|
Jeanneteau F, Deinhardt K. Fine-tuning MAPK signaling in the brain: The role of MKP-1. Commun Integr Biol 2011; 4:281-3. [PMID: 21980558 DOI: 10.4161/cib.4.3.14766] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 12/30/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) signaling influences a variety of neuronal properties, including structural characteristics such as spine density, and physiological features like long-term potentiation. Spatiotemporal control of MAPK signaling is crucial to generate specific changes in neuronal physiology. However, while many studies have concentrated on the activation of MAPK signaling by trophic factors such as BDNF and neuronal activity, the mechanisms that lead to its termination have not been well described. Two recent reports begin to address this question by focusing on the role of the MAPK phosphatase, MKP-1, in neuronal function. The first study provides a cellular mechanism underlying MKP-1 action in the brain.1 The second study describes potential roles of MKP-1 during stress and major depression.2.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Molecular Neurobiology Program; Skirball Institute of Biomolecular Medicine; New York University Langone School of Medicine; New York, NY USA
| | | |
Collapse
|
15
|
Foster PP, Rosenblatt KP, Kuljiš RO. Exercise-induced cognitive plasticity, implications for mild cognitive impairment and Alzheimer's disease. Front Neurol 2011; 2:28. [PMID: 21602910 PMCID: PMC3092070 DOI: 10.3389/fneur.2011.00028] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 04/18/2011] [Indexed: 12/17/2022] Open
Abstract
Lifestyle factors such as intellectual stimulation, cognitive and social engagement, nutrition, and various types of exercise appear to reduce the risk for common age-associated disorders such as Alzheimer’s disease (AD) and vascular dementia. In fact, many studies have suggested that promoting physical activity can have a protective effect against cognitive deterioration later in life. Slowing or a deterioration of walking speed is associated with a poor performance in tests assessing psychomotor speed and verbal fluency in elderly individuals. Fitness training influences a wide range of cognitive processes, and the largest positive impact observed is for executive (a.k.a. frontal lobe) functions. Studies show that exercise improves additional cognitive functions such as tasks mediated by the hippocampus, and result in major changes in plasticity in the hippocampus. Interestingly, this exercise-induced plasticity is also pronounced in APOE ε4 carriers who express a risk factor for late-onset AD that may modulate the effect of treatments. Based on AD staging by Braak and Braak (1991) and Braak et al. (1993) we propose that the effects of exercise occur in two temporo-spatial continua of events. The “inward” continuum from isocortex (neocortex) to entorhinal cortex/hippocampus for amyloidosis and a reciprocal “outward” continuum for neurofibrillary alterations. The exercise-induced hypertrophy of the hippocampus at the core of these continua is evaluated in terms of potential for prevention to stave off neuronal degeneration. Exercise-induced production of growth factors such as the brain-derived neurotrophic factor (BDNF) has been shown to enhance neurogenesis and to play a key role in positive cognitive effects. Insulin-like growth factor (IGF-1) may mediate the exercise-induced response to exercise on BDNF, neurogenesis, and cognitive performance. It is also postulated to regulate brain amyloid β (Aβ) levels by increased clearance via the choroid plexus. Growth factors, specifically fibroblast growth factor and IGF-1 receptors and/or their downstream signaling pathways may interact with the Klotho gene which functions as an aging suppressor gene. Neurons may not be the only cells affected by exercise. Glia (astrocytes and microglia), neurovascular units and the Fourth Element may also be affected in a differential fashion by the AD process. Analyses of these factors, as suggested by the multi-dimensional matrix approach, are needed to improve our understanding of this complex multi-factorial process, which is increasingly relevant to conquering the escalating and intersecting world-wide epidemics of dementia, diabetes, and sarcopenia that threaten the global healthcare system. Physical activity and interventions aimed at enhancing and/or mimicking the effects of exercise are likely to play a significant role in mitigating these epidemics, together with the embryonic efforts to develop cognitive rehabilitation for neurodegenerative disorders.
Collapse
Affiliation(s)
- Philip P Foster
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch Galveston, TX, USA
| | | | | |
Collapse
|
16
|
Ferreira CKO, Prestes J, Donatto FF, Verlengia R, Navalta JW, Cavaglieri CR. Phagocytic responses of peritoneal macrophages and neutrophils are different in rats following prolonged exercise. Clinics (Sao Paulo) 2010; 65:1167-73. [PMID: 21243292 PMCID: PMC2999715 DOI: 10.1590/s1807-59322010001100020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/10/2010] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To analyze the effects of exhausting long-duration physical exercise (swimming) sessions of different durations and intensities on the number and phagocytic capacity of macrophages and neutrophils in sedentary rats. INTRODUCTION Exercise intensity, duration and frequency are important factors in determining immune response to physical effort. Thus, the effects of exhausting long-duration exercise are unclear. METHODS Wistar rats were divided into two groups: an untreated group (macrophage study) and oyster glycogen-treated rats (neutrophil study). In each group, the animals were subdivided into five groups (10 rats per group): unexercised controls, an unadapted low-intensity exercise group, an unadapted moderate-intensity exercise group, a preadapted low-intensity exercise group and a preadapted moderate-intensity exercise group. All exercises were performed to exhaustion, and preadaptation consisted of 5, 15, 30 and 45 min sessions. RESULTS Macrophage study: the number of peritoneal macrophages significantly decreased (9.22 ± 1.78 x 10(6)) after unadapted exercise but increased (21.50 ± 0.63 x 10(6)) after preadapted low-intensity exercise, with no changes in the moderate-intensity exercise group. Phagocytic capacity, however, increased by more than 80% in all exercise groups (low/moderate, unadapted/preadapted). Neutrophil study: the number of peritoneal neutrophils significantly decreased after unadapted (29.20 ± 3.34 x 10(6)) and preadapted (50.00 ± 3.53 x 10(6)) low-intensity exercise but increased after unadapted (127.60 ± 5.14 x 10(6)) and preadapted (221.80 ± 14.85 x 10(6)) moderate exercise. Neutrophil phagocytic capacity decreased by 63% after unadapted moderate exercise but increased by 90% after corresponding preadapted sessions, with no changes in the low-intensity exercise groups. CONCLUSION Neutrophils and macrophages of sedentary rats respond differently to exercise-induced stress. Adaptation sessions reduce exercise-induced stress on the immune system.
Collapse
|