1
|
Khattab E, Velidakis N, Gkougkoudi E, Kadoglou NP. Exercise-Induced Pulmonary Hypertension: A Valid Entity or Another Factor of Confusion? LIFE (BASEL, SWITZERLAND) 2023; 13:life13010128. [PMID: 36676077 PMCID: PMC9860538 DOI: 10.3390/life13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
Exercise-induced pulmonary hypertension EIPH has been defined as an increase in mean pulmonary arterial pressure (mPAP) during exercise in otherwise normal values at rest. EIPH reflects heart and/or lung dysfunction and may precede the development of manifest pulmonary hypertension (PH) in a proportion of patients. It is also associated with decreased life expectancy in patients with heart failure with reduced ejection fraction (HFrEF) or left ventricle (LV) valvular diseases. Diastolic dysfunction exacerbated during exercise relates to increased LV filling pressure and left atrial pressure (LAP). In this context backward, transmitted pressure alone or accompanied with backward blood flow promotes EIPH. The gold standard of EIPH assessment remains the right heart catheterization during exercise, which is an accurate but invasive method. Alternatively, non-invasive diagnostic modalities include exercise stress echocardiography (ESE) and cardiopulmonary exercise testing (CPET). Both diagnostic tests are performed under gradually increasing physical stress using treadmill and ergo-cycling protocols. Escalating workload during the exercise is analogous to the physiological response to real exercise. The results of the latter techniques show good correlation with invasive measurements, but they suffer from lack of validation and cut-off value determination. Although it is not officially recommended, there are accumulated data supporting the importance of EIPH diagnosis in the assessment of other mild/subclinical or probably fatal diseases in patients with latent PH or heart failure or LV valvular disease, respectively. Nevertheless, larger, prospective studies are required to ensure its role in clinical practice.
Collapse
|
2
|
Duke JW, Lewandowski AJ, Abman SH, Lovering AT. Physiological aspects of cardiopulmonary dysanapsis on exercise in adults born preterm. J Physiol 2022; 600:463-482. [PMID: 34961925 PMCID: PMC9036864 DOI: 10.1113/jp281848] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023] Open
Abstract
Progressive improvements in perinatal care and respiratory management of preterm infants have resulted in increased survival of newborns of extremely low gestational age over the past few decades. However, the incidence of bronchopulmonary dysplasia, the chronic lung disease after preterm birth, has not changed. Studies of the long-term follow-up of adults born preterm have shown persistent abnormalities of respiratory, cardiovascular and cardiopulmonary function, possibly leading to a lower exercise capacity. The underlying causes of these abnormalities are incompletely known, but we hypothesize that dysanapsis, i.e. discordant growth and development, in the respiratory and cardiovascular systems is a central structural feature that leads to a lower exercise capacity in young adults born preterm than those born at term. We discuss how the hypothesized system dysanapsis underscores the observed respiratory, cardiovascular and cardiopulmonary limitations. Specifically, adults born preterm have: (1) normal lung volumes but smaller airways, which causes expiratory airflow limitation and abnormal respiratory mechanics but without impacts on pulmonary gas exchange efficiency; (2) normal total cardiac size but smaller cardiac chambers; and (3) in some cases, evidence of pulmonary hypertension, particularly during exercise, suggesting a reduced pulmonary vascular capacity despite reduced cardiac output. We speculate that these underlying developmental abnormalities may accelerate the normal age-associated decline in exercise capacity, via an accelerated decline in respiratory, cardiovascular and cardiopulmonary function. Finally, we suggest areas of future research, especially the need for longitudinal and interventional studies from infancy into adulthood to better understand how preterm birth alters exercise capacity across the lifespan.
Collapse
Affiliation(s)
- Joseph W. Duke
- Northern Arizona University, Department of Biological Sciences, Flagstaff, AZ, USA
| | - Adam J. Lewandowski
- University of Oxford, Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Steven H. Abman
- University of Colorado Anschutz School of Medicine, Department of Pediatrics, Aurora, CO, USA
- Pediatric Heart Lung Center, Children’s Hospital Colorado, Aurora, CO, USA
| | | |
Collapse
|
3
|
Duke JW, Lovering AT. Respiratory and cardiopulmonary limitations to aerobic exercise capacity in adults born preterm. J Appl Physiol (1985) 2020; 129:718-724. [PMID: 32790592 DOI: 10.1152/japplphysiol.00419.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Adults born preterm, regardless of whether they develop bronchopulmonary dysplasia, have underdeveloped respiratory and cardiopulmonary systems. The resulting impaired respiratory and cardiopulmonary systems are inadequate for the challenges imposed by aerobic exercise, which is exacerbated by the presence of bronchopulmonary dysplasia. Thus the respiratory and cardiopulmonary systems of these preterm individuals may be the most influential contributors to the significantly lower aerobic exercise capacity compared with their term born counterparts. The precise underlying cause(s) of the lower aerobic exercise capacity in adults born preterm is not entirely known but could be a number of interrelated parameters including mechanical ventilatory constraints, impaired pulmonary gas exchange efficiency, and excessive cardiopulmonary pressures. Likewise, additional aspects, such as impaired cardiovascular function and altered muscle bioenergetics, may play additional roles in limiting aerobic exercise capacity. Whether or not all or some of these aspects are present in adults born preterm and precisely how they may contribute to the lower aerobic exercise capacity are only beginning to be systematically explored. The purpose of this mini-review is to outline what is currently known about the respiratory and cardiopulmonary limitations during exercise in this population and to identify key areas where additional knowledge will help to advance this area. Additionally, where possible, we highlight the similarities and differences between obstructive lung disease resulting from preterm birth and chronic obstructive pulmonary disease (COPD) as the physiology and pathophysiology of these two forms of obstructive lung disease may not be identical.
Collapse
Affiliation(s)
- Joseph W Duke
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
4
|
Pulmonary Vascular and Right Ventricular Burden During Exercise in Interstitial Lung Disease. Chest 2020; 158:350-358. [PMID: 32173491 DOI: 10.1016/j.chest.2020.02.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 12/25/2019] [Accepted: 02/03/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) adversely affects patient's exercise capacity in interstitial lung disease (ILD). The impact of pulmonary vascular and right ventricular (RV) dysfunction, however, has traditionally been believed to be mild and clinically relevant principally in advanced lung disease states. RESEARCH QUESTION The aim of this study was to evaluate the relative contributions of pulmonary mechanics, pulmonary vascular function, and RV function to the ILD exercise limit. STUDY DESIGN AND METHODS Forty-nine patients with ILD who underwent resting right heart catheterization followed by invasive exercise testing were evaluated. Patients with PH at rest (ILD + rPH) and with PH diagnosed exclusively during exercise (ILD + ePH) were contrasted with ILD patients without PH (ILD non-PH). RESULTS Peak oxygen consumption was reduced in ILD + rPH (61 ± 10% predicted) and ILD + ePH (67 ± 13% predicted) compared with ILD non-PH (81 ± 16% predicted; P < .001 and P = .016, respectively). Each ILD hemodynamic phenotype presented distinct patterns of dynamic changes of pulmonary vascular compliance relative to pulmonary vascular resistance from rest to peak exercise. Peak RV stroke work index was increased in ILD + ePH (24.7 ± 8.2 g/m2 per beat) and ILD + rPH (30.9 ± 6.1 g/m2 per beat) compared with ILD non-PH (18.3 ± 6.4 g/m2 per beat; P = .020 and P = .014). Ventilatory reserve was reduced in ILD + rPH compared with the other groups at the anaerobic threshold, but it was similar between ILD + ePH and ILD non-PH at the anaerobic threshold (0.32 ± 0.13 vs 0.30 ± 0.11; P = .921) and at peak exercise (0.70 ± 0.17 vs 0.73 ± 0.24; P = .872). INTERPRETATION ILD with resting and exercise PH is associated with increased exercise RV work, reduced pulmonary vascular reserve, and reduced peak oxygen consumption. The findings highlight the role of pulmonary vascular and RV burden to ILD exercise limit.
Collapse
|
5
|
Sanders JL, Han Y, Urbina MF, Systrom DM, Waxman AB. Metabolomics of exercise pulmonary hypertension are intermediate between controls and patients with pulmonary arterial hypertension. Pulm Circ 2019; 9:2045894019882623. [PMID: 31695905 DOI: 10.1177/2045894019882623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/18/2019] [Indexed: 01/06/2023] Open
Abstract
Mechanisms underlying pulmonary arterial hypertension (PAH) remain elusive. Pulmonary arterial hypertension and exercise PH share similar physiologic consequences; it is debated whether they share biologic mechanisms and if exercise PH represents an early phase of pulmonary arterial hypertension. We conducted an observational study to test if there is a graded metabolic disturbance along the severity of PH, which may indicate shared or disparate pathophysiology. Individuals referred to an academic medical dyspnea center with unexplained exertional intolerance underwent invasive cardiopulmonary exercise testing. We identified controls with no hemodynamic exercise limitation, individuals with exercise PH (mean pulmonary arterial pressure (mPAP) < 25 mmHg at rest but ≥ 30 mmHg during exercise without pulmonary venous hypertension) and pulmonary arterial hypertension (mPAP > 25 mmHg at rest without pulmonary venous hypertension) (n = 26 in each group). Unbiased metabolomics with chromatography mass spectrometry was performed on pulmonary arterial blood at rest and peak exercise. Random forest analysis and hierarchical clustering were used to quantify metabolite prediction of group membership and rank metabolites which were significantly different between groups. Compared to controls, pulmonary arterial hypertension subjects exhibited perturbations in pathways involving glycolysis, TCA cycle, fatty acid and complex lipid oxidation, collagen deposition and fibrosis, nucleotide metabolism, and others. The metabolic signature of exercise PH was uniquely between that of control and pulmonary arterial hypertension subjects. Accuracy predicting control, exercise PH, and pulmonary arterial hypertension group was 96%, 90%, and 88%, respectively, using paired rest-exercise metabolic changes. Our data suggest the metabolic profile of exercise PH is between that of controls and patients with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jason L Sanders
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Yuchi Han
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Mariana F Urbina
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David M Systrom
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Singh I, Rahaghi FN, Naeije R, Oliveira RKF, Vanderpool RR, Waxman AB, Systrom DM. Dynamic right ventricular-pulmonary arterial uncoupling during maximum incremental exercise in exercise pulmonary hypertension and pulmonary arterial hypertension. Pulm Circ 2019; 9:2045894019862435. [PMID: 31218910 PMCID: PMC6643191 DOI: 10.1177/2045894019862435] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite recent advances, the prognosis of pulmonary hypertension (PH) remains poor. While the initial insult in PH implicates the pulmonary vasculature, the functional state, exercise capacity, and survival of such patients are closely linked to right ventricular (RV) function. In the current study, we sought to investigate the effects of maximum incremental exercise on the matching of RV contractility and afterload (i.e. right ventricular-pulmonary arterial [RV-PA] coupling) in patients with exercise PH (ePH) and pulmonary arterial hypertension (PAH). End-systolic elastance (Ees), pulmonary arterial elastance (Ea), and RV-PA coupling (Ees/Ea) were determined using single-beat pressure-volume loop analysis in 40 patients that underwent maximum invasive cardiopulmonary exercise testing. Eleven patients had ePH, nine had PAH, and 20 were age-matched controls. During exercise, the impaired exertional contractile reserve in PAH was associated with blunted stroke volume index (SVI) augmentation and reduced peak oxygen consumption (peak VO2 %predicted). Compared to PAH, ePH demonstrated increased RV contractility in response to increasing RV afterload during exercise; however, this was insufficient and resulted in reduced peak RV-PA coupling. The dynamic RV-PA uncoupling in ePH was associated with similarly blunted SVI augmentation and peak VO2 as PAH. In conclusion, dynamic rest-to-peak exercise RV-PA uncoupling during maximum exercise blunts SV increase and reduces exercise capacity in exercise PH and PAH. In ePH, the insufficient increase in RV contractility to compensate for increasing RV afterload during maximum exercise leads to deterioration of RV-PA coupling. These data provide evidence that even in the early stages of PH, RV function is compromised.
Collapse
Affiliation(s)
- Inderjit Singh
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Yale New Haven Hospital and Yale School of Medicine, New Haven, CT, USA
| | - Farbod N Rahaghi
- 2 Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert Naeije
- 3 Department of Pathophysiology, Erasmsus Campus, Brussels, Belgium
| | - Rudolf K F Oliveira
- 4 Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo - UNIFESP, São Paulo, Brazil
| | | | - Aaron B Waxman
- 2 Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David M Systrom
- 2 Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Oliveira RKF, Faria-Urbina M, Maron BA, Santos M, Waxman AB, Systrom DM. Functional impact of exercise pulmonary hypertension in patients with borderline resting pulmonary arterial pressure. Pulm Circ 2017; 7:654-665. [PMID: 28895507 PMCID: PMC5841910 DOI: 10.1177/2045893217709025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Borderline resting mean pulmonary arterial pressure (mPAP) is associated with adverse outcomes and affects the exercise pulmonary vascular response. However, the pathophysiological mechanisms underlying exertional intolerance in borderline mPAP remain incompletely characterized. In the current study, we sought to evaluate the prevalence and functional impact of exercise pulmonary hypertension (ePH) across a spectrum of resting mPAP’s in consecutive patients with contemporary resting right heart catheterization (RHC) and invasive cardiopulmonary exercise testing. Patients with resting mPAP <25 mmHg and pulmonary arterial wedge pressure ≤15 mmHg (n = 312) were stratified by mPAP < 13, 13–16, 17–20, and 21–24 mmHg. Those with ePH (n = 35) were compared with resting precapillary pulmonary hypertension (rPH; n = 16) and to those with normal hemodynamics (non-PH; n = 224). ePH prevalence was 6%, 8%, and 27% for resting mPAP 13–16, 17–20, and 21–24 mmHg, respectively. Within each of these resting mPAP epochs, ePH negatively impacted exercise capacity compared with non-PH (peak oxygen uptake 70 ± 16% versus 92 ± 19% predicted, P < 0.01; 72 ± 13% versus 86 ± 17% predicted, P < 0.05; and 64 ± 15% versus 82 ± 19% predicted, P < 0.001, respectively). Overall, ePH and rPH had similar functional limitation (peak oxygen uptake 67 ± 15% versus 68 ± 17% predicted, P > 0.05) and similar underlying mechanisms of exercise intolerance compared with non-PH (peak oxygen delivery 1868 ± 599 mL/min versus 1756 ± 720 mL/min versus 2482 ± 875 mL/min, respectively; P < 0.05), associated with chronotropic incompetence, increased right ventricular afterload and signs of right ventricular/pulmonary vascular uncoupling. In conclusion, ePH is most frequently found in borderline mPAP, reducing exercise capacity in a manner similar to rPH. When borderline mPAP is identified at RHC, evaluation of the pulmonary circulation under the stress of exercise is warranted.
Collapse
Affiliation(s)
- Rudolf K F Oliveira
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,2 Heart & Vascular Center, Brigham and Women's Hospital, Boston, MA, USA.,3 Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Mariana Faria-Urbina
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,2 Heart & Vascular Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Bradley A Maron
- 4 Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,5 Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Mario Santos
- 6 Department of Physiology and Cardiothoracic Surgery, Cardiovascular R&D Unit, Faculty of Medicine, University of Porto, Portugal
| | - Aaron B Waxman
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,2 Heart & Vascular Center, Brigham and Women's Hospital, Boston, MA, USA
| | - David M Systrom
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,2 Heart & Vascular Center, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Segrera SA, Lawler L, Opotowsky AR, Systrom D, Waxman AB. Open label study of ambrisentan in patients with exercise pulmonary hypertension. Pulm Circ 2017; 7:531-538. [PMID: 28597763 PMCID: PMC5467947 DOI: 10.1177/2045893217709024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A growing body of evidence suggests that exercise pulmonary hypertension (ePH) is an early form of pulmonary arterial hypertension (PAH). Identifying the disease at an early, potentially more responsive phase, and initiating treatment may improve functional status and prevent progression to severe forms of PAH. This was a single-center, open-label six-month treatment trial to evaluate the effect of ambrisentan on pulmonary hemodynamics and exercise capacity in ePH utilizing invasive cardiopulmonary exercise testing (iCPET). After six months of treatment with ambrisentan, patients repeated iCPET; exercise capacity, symptoms, and pulmonary hemodynamics were reassessed. Twenty-two of 30 patients completed the treatment phase and repeat iCPET. After six months of treatment there was a significant decline in peak exercise mPAP (−5.2 ± 5.6 mmHg, P = 0.001), TPG (−7.1 ± 8.0 mmHg, P = 0.001), PVR (−0.9 ± 0.7 Woods units, P = 0.0002), and Ca-vO2 (−1.8 ± 2.3 mL/dL, P = 0.0002), with significant increases in peak PCWP (+2.9 ± 5.6 mmHg, P = 0.02), PVC (+0.8 ± 1.4 mL/mmHg, P = 0.03), and CO (+2.3 ± 1.4 L/min, P = 0.0001). A trend toward increased VO2max (+4.4 ± 2.6% predicted, P = 0.07) was observed. In addition, there were improvements in 6MWD and WHO FC after 24 weeks. Our findings suggest that treatment of ePH with ambrisentan results in improved pulmonary hemodynamics and functional status over a six-month period. Treatment of ePH may prevent the progression of vascular remodeling and development of established PAH.
Collapse
Affiliation(s)
- Sergio A Segrera
- Center for Pulmonary-Heart Diseases, Pulmonary Vascular Disease Program, Pulmonary Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Laurie Lawler
- Center for Pulmonary-Heart Diseases, Pulmonary Vascular Disease Program, Pulmonary Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexander R Opotowsky
- Center for Pulmonary-Heart Diseases, Pulmonary Vascular Disease Program, Pulmonary Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David Systrom
- Center for Pulmonary-Heart Diseases, Pulmonary Vascular Disease Program, Pulmonary Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Aaron B Waxman
- Center for Pulmonary-Heart Diseases, Pulmonary Vascular Disease Program, Pulmonary Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Misra D, Kendes A, Sulica R, Carabello B. Exercise-induced pulmonary hypertension by stress echocardiography: Prevalence and correlation with right heart hemodynamics. Int J Cardiol 2016; 228:518-522. [PMID: 27875728 DOI: 10.1016/j.ijcard.2016.11.191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to determine the prevalence of exercise-induced pulmonary hypertension (EIPH) in consecutive subjects referred for stress echocardiography for chest pain or shortness of breath and correlate echocardiographic diagnosis of EIPH with hemodynamics at right heart catheterization (RHC). BACKGROUND Elevated pulmonary pressure can lead to significant morbidity and mortality. EIPH by ehocardiography has been described in patients with connective tissue disease. It's prevalence in the setting of routine clinically indicated stress echocardiography unknown. METHODS In a retrospective analysis of 4068 consecutive stress subjects undergoing stress echocardiography, 479 subjects with EIPH were identified. All 479 subjects with EIPH were compared to 479 age and sex matched subjects with normal pulmonary artery pressures post exercise. EIPH was defined as PASP>50mmHg or peak tricuspid regurgitation velocity>3.2m/s. Of 100 patients with EIPH who underwent RHC we identified variables which predicted abnormal hemodynamic findings on RHC. RESULTS The prevalence of EIPH in subjects referred for stress echocardiography was 11.7%. A greater proportion of subjects with EIPH were obese or had lung disease or connective tissue disease. Of 100 subjects who underwent RHC, 65 had abnormal results. Age>55years (OR 5.1, p<0.01]) or dilated left atrium (OR 4.4, p=0.02]) were independently associated with abnormal right heart hemodynamics. CONCLUSIONS The results demonstrate that 11.7% of patients undergoing clinically indicated stress echocardiography have EIPH. Of those who underwent RHC abnormal hemodynamics were significantly associated with a dilated left atrium or age older than 55years.
Collapse
Affiliation(s)
- Deepika Misra
- Thomas Killip Division of Cardiology, Mount Sinai Beth Israel, New York, NY 10003, United States.
| | - Ante Kendes
- Thomas Killip Division of Cardiology, Mount Sinai Beth Israel, New York, NY 10003, United States.
| | - Roxana Sulica
- Division of Pulmonary and Critical Care Medicine, Mount Sinai Beth Israel, New York, NY 10003, United States.
| | - Blase Carabello
- Division of Cardiology, East Carolina University, Greenville, NC 27858, United States.
| |
Collapse
|
10
|
Berry NC, Manyoo A, Oldham WM, Stephens TE, Goldstein RH, Waxman AB, Tracy JA, Leary PJ, Leopold JA, Kinlay S, Opotowsky AR, Systrom DM, Maron BA. Protocol for exercise hemodynamic assessment: performing an invasive cardiopulmonary exercise test in clinical practice. Pulm Circ 2015; 5:610-8. [PMID: 26697168 DOI: 10.1086/683815] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Invasive cardiopulmonary exercise testing (iCPET) combines full central hemodynamic assessment with continuous measurements of pulmonary gas exchange and ventilation to help in understanding the pathophysiology underpinning unexplained exertional intolerance. There is increasing evidence to support the use of iCPET as a key methodology for diagnosing heart failure with preserved ejection fraction and exercise-induced pulmonary hypertension as occult causes of exercise limitation, but there is little information available outlining the methodology to use this diagnostic test in clinical practice. To bridge this knowledge gap, the operational protocol for iCPET at our institution is discussed in detail. In turn, a standardized iCPET protocol may provide a common framework to describe the evolving understanding of mechanism(s) that limit exercise capacity and to facilitate research efforts to define novel treatments in these patients.
Collapse
Affiliation(s)
- Natalia C Berry
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Agarwal Manyoo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas E Stephens
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ronald H Goldstein
- Department of Pulmonary and Critical Care Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
| | - Aaron B Waxman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA ; Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Julie A Tracy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Peter J Leary
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Scott Kinlay
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA ; Department of Cardiology, Veterans Affairs Boston Healthcare System, Boston Massachusetts, USA
| | - Alexander R Opotowsky
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA ; Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David M Systrom
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bradley A Maron
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA ; Department of Cardiology, Veterans Affairs Boston Healthcare System, Boston Massachusetts, USA
| |
Collapse
|
11
|
Oliveira RKF, Agarwal M, Tracy JA, Karin AL, Opotowsky AR, Waxman AB, Systrom DM. Age-related upper limits of normal for maximum upright exercise pulmonary haemodynamics. Eur Respir J 2015; 47:1179-88. [PMID: 26677941 DOI: 10.1183/13993003.01307-2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/31/2015] [Indexed: 11/05/2022]
Abstract
The exercise definition of pulmonary hypertension was eliminated from the pulmonary hypertension guidelines in part due to uncertainty of the upper limits of normal (ULNs) for exercise haemodynamics in subjects >50 years old.The present study, therefore, evaluated the pulmonary haemodynamic responses to maximum upright incremental cycling exercise in consecutive subjects who underwent an invasive cardiopulmonary exercise testing for unexplained exertional intolerance, deemed normal based on preserved exercise capacity and normal resting supine haemodynamics. Subjects aged >50 years old (n=41) were compared with subjects ≤50 years old (n=25). ULNs were calculated as mean + 2 sdPeak exercise mean pulmonary arterial pressure was not different for subjects >50 and ≤50 years old (23 ± 5 versus 22 ± 4 mmHg, p=0.22), with ULN of 33 and 30 mmHg, respectively. Peak cardiac output was lower in older subjects (median (interquartile range): 12.1 (9.4-14.2)versus16.2 (13.8-19.2) L·min(-1), p<0.001). Peak pulmonary vascular resistance was higher in older subjects compared with younger subjects (mean ± sd: 1.20 ± 0.45 versus 0.82 ± 0.26 Wood units, p<0.001), with ULN of 2.10 and 1.34 Wood units, respectively.We observed that subjects >50 and ≤ 50 years old have different pulmonary vascular responses to exercise. Older subjects have higher pulmonary vascular resistance at peak exercise, resulting in different exercise haemodynamics ULNs compared with the younger population.
Collapse
Affiliation(s)
- Rudolf K F Oliveira
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA Heart and Vascular Center, Brigham and Women's Hospital, Boston, MA, USA Division of Respiratory Diseases, Dept of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil These authors contributed equally to the study
| | - Manyoo Agarwal
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA Heart and Vascular Center, Brigham and Women's Hospital, Boston, MA, USA These authors contributed equally to the study
| | - Julie A Tracy
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA Heart and Vascular Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Abbey L Karin
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA Heart and Vascular Center, Brigham and Women's Hospital, Boston, MA, USA
| | - Alexander R Opotowsky
- Heart and Vascular Center, Brigham and Women's Hospital, Boston, MA, USA Dept of Cardiology, Boston Children's Hospital, Boston, MA, USA Division of Cardiovascular Medicine, Dept of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA Heart and Vascular Center, Brigham and Women's Hospital, Boston, MA, USA
| | - David M Systrom
- Division of Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA Heart and Vascular Center, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
12
|
White K, Lu Y, Annis S, Hale AE, Chau BN, Dahlman JE, Hemann C, Opotowsky AR, Vargas SO, Rosas I, Perrella MA, Osorio JC, Haley KJ, Graham BB, Kumar R, Saggar R, Saggar R, Wallace WD, Ross DJ, Khan OF, Bader A, Gochuico BR, Matar M, Polach K, Johannessen NM, Prosser HM, Anderson DG, Langer R, Zweier JL, Bindoff LA, Systrom D, Waxman AB, Jin RC, Chan SY. Genetic and hypoxic alterations of the microRNA-210-ISCU1/2 axis promote iron-sulfur deficiency and pulmonary hypertension. EMBO Mol Med 2015; 7:695-713. [PMID: 25825391 PMCID: PMC4459813 DOI: 10.15252/emmm.201404511] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 12/03/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR-210-ISCU1/2 axis cause Fe-S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR-210 and repression of the miR-210 targets ISCU1/2 down-regulated Fe-S levels. In mouse and human vascular and endothelial tissue affected by PH, miR-210 was elevated accompanied by decreased ISCU1/2 and Fe-S integrity. In mice, miR-210 repressed ISCU1/2 and promoted PH. Mice deficient in miR-210, via genetic/pharmacologic means or via an endothelial-specific manner, displayed increased ISCU1/2 and were resistant to Fe-S-dependent pathophenotypes and PH. Similar to hypoxia or miR-210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise-induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR-210-ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe-S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings.
Collapse
Affiliation(s)
- Kevin White
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yu Lu
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sofia Annis
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew E Hale
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - James E Dahlman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Craig Hemann
- The Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Alexander R Opotowsky
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivan Rosas
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juan C Osorio
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kathleen J Haley
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Brian B Graham
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO, USA
| | - Rahul Kumar
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO, USA
| | - Rajan Saggar
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rajeev Saggar
- Department of Cardiothoracic Surgery, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - W Dean Wallace
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David J Ross
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Omar F Khan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew Bader
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Haydn M Prosser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Daniel G Anderson
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jay L Zweier
- The Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Laurence A Bindoff
- Department of Clinical Medicine, University of Bergen, Bergen, Norway Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - David Systrom
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aaron B Waxman
- Division of Pulmonary/Critical Care Medicine, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard C Jin
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Y Chan
- Divisions of Cardiovascular Medicine and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Keusch S, Bucher A, Müller-Mottet S, Hasler E, Maggiorini M, Speich R, Ulrich S. Experience with exercise right heart catheterization in the diagnosis of pulmonary hypertension: a retrospective study. Multidiscip Respir Med 2014; 9:51. [PMID: 25352986 PMCID: PMC4210570 DOI: 10.1186/2049-6958-9-51] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/01/2014] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Data on exercise pulmonary hemodynamics in healthy people and patients with pulmonary hypertension (PH) are rare. We analyzed exercise right heart catheterization (RHC) data in a symptomatic collective referred with suspected PH to characterize the differential response by diagnostic groups, to correlate resting with exercise hemodynamics, and to evaluate safety. METHODS This is a retrospective single-center study reviewing data from patients in whom an exercise RHC was performed between January 2006 and January 2013. Patients with follow-up RHC under PH -therapy were excluded. RESULTS Data from 101 patients were analyzed, none of them had an adverse event. In 35% we detected a resting PH (27.8% precapillary, 6.9% postcapillary). Exercise PH (mean pulmonary arterial pressure (mPAP) >30 mmHg at exercise) was found in 38.6%, whereas in 25.7% PH was excluded. We found a remarkable number of exercise PH in scleroderma patients, the majority being postcapillary. 83% of patients with mPAP-values between 20 and 24.9 mmHg at rest had exercise PH. Patients with resting PH had worse hemodynamics and were older compared with exercise PH ones. CONCLUSION In this real-life experience in symptomatic patients undergoing exercise RHC for suspected PH, we found that exercise RHC is safe. The facts that the vast majority of patients with mPAP-values between 20 and 24.9 mmHg at rest had exercise PH and the older age of patients with resting PH may indicate that exercise PH is a precursor of resting PH. Whether earlier treatment start in patients with exercise PH would stabilize the disease should be addressed in future studies.
Collapse
Affiliation(s)
- Stephan Keusch
- Clinic of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Anina Bucher
- Clinic of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | | | - Elisabeth Hasler
- Clinic of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Marco Maggiorini
- Clinic for Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Rudolf Speich
- Clinic for Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Silvia Ulrich
- Clinic of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland ; Zurich Center for Integrative Human Physiology, Zurich, Switzerland
| |
Collapse
|
14
|
The Role of Exercise Testing in the Modern Management of Pulmonary Arterial Hypertension. Diseases 2014. [DOI: 10.3390/diseases2020120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Exercise intolerance in pulmonary arterial hypertension. Pulm Med 2012; 2012:359204. [PMID: 22737582 PMCID: PMC3377355 DOI: 10.1155/2012/359204] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 01/12/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with symptoms of dyspnea and fatigue, which contribute to exercise limitation. The origins and significance of dyspnea and fatigue in PAH are not completely understood. This has created uncertainly among healthcare professionals regarding acceptable levels of these symptoms, on exertion, for patients with PAH. Dysfunction of the right ventricle (RV) contributes to functional limitation and mortality in PAH; however, the role of the RV in eliciting dyspnea and fatigue has not been thoroughly examined. This paper explores the contribution of the RV and systemic and peripheral abnormalities to exercise limitation and symptoms in PAH. Further, it explores the relationship between exercise abnormalities and symptoms, the utility of the cardiopulmonary exercise test in identifying RV dysfunction, and offers suggestions for further research.
Collapse
|
16
|
|
17
|
Fowler RM, Maiorana AJ, Jenkins SC, Gain KR, O'Driscoll G, Gabbay E. A comparison of the acute haemodynamic response to aerobic and resistance exercise in subjects with exercise-induced pulmonary arterial hypertension. Eur J Prev Cardiol 2012; 20:605-12. [PMID: 22505056 DOI: 10.1177/2047487312445424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Exercise-induced pulmonary arterial hypertension (EIPAH) is associated with reduced exercise capacity and abnormal central haemodynamic responses to maximal aerobic exercise. Aerobic and resistance exercise training are commonly employed to treat reduced exercise capacity; however, the haemodynamic response to aerobic and resistance exercise, at training intensities, in subjects with EIPAH is unknown. METHODS Fourteen subjects (11 with scleroderma, 12 females) with EIPAH underwent cardiopulmonary exercise testing on a cycle ergometer, a one-repetition maximum (1RM) strength test and resistance exercise at 40% and 60% of maximum on a bilateral leg press machine. All tests were performed with a pulmonary artery catheter in situ. Haemodynamic and symptomatic responses to aerobic and resistance exercise, performed at 40% of peak oxygen consumption and 40% of 1RM, and at 60% of peak oxygen consumption and 60% of 1RM, were compared. For maximal exercise, the highest haemodynamic responses recorded during the cycling and 1RM tests were compared. RESULTS There were no differences in haemodynamic or symptomatic responses between the two modalities of submaximal exercise. At maximal exercise, all haemodynamic and symptomatic responses were lower during resistance compared with aerobic exercise (p < 0.05). CONCLUSIONS At the intensities studied, lower-limb resistance exercise was well tolerated and was mostly associated with similar or lower haemodynamic responses compared with aerobic exercise, in subjects with EIPAH.
Collapse
Affiliation(s)
- Robin M Fowler
- Advanced Lung Disease Program, Royal Perth Hospital, Perth, Australia.
| | | | | | | | | | | |
Collapse
|
18
|
Chronic Thromboembolic Pulmonary Hypertension: Treat the Patient Not the Haemodynamics. Case Rep Pulmonol 2012; 2012:108672. [PMID: 23133777 PMCID: PMC3485485 DOI: 10.1155/2012/108672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/02/2012] [Indexed: 11/18/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a disabling condition that is being increasingly recognised. It is unique as a cause of pulmonary hypertension in that it is surgically curable. We wish to highlight the importance of recognition and early referral of any patient who may have CTEPH even in the absence of resting pulmonary hypertension as excellent results can be achieved by restoring pulmonary vascular anatomy, reducing exercise-induced pulmonary hypertension, and reducing dead-space ventilation. We present a case that illustrates these points and discuss our experience as a referral centre for CTEPH.
Collapse
|
19
|
Arena R. Detecting abnormal pulmonary hemodynamics with cardiopulmonary exercise testing. Med Sci Sports Exerc 2011; 43:982. [PMID: 21577081 DOI: 10.1249/mss.0b013e31820e5fb3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ross Arena
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
20
|
Fowler RM, Jenkins SC, Maiorana AJ, Gain KR, O'Driscoll G, Gabbay E. Measurement properties of the 6-min walk test in individuals with exercise-induced pulmonary arterial hypertension. Intern Med J 2011; 41:679-87. [DOI: 10.1111/j.1445-5994.2011.02501.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|