1
|
Njire Braticevic M, Zarak M, Simac B, Perovic A, Dumic J. Effects of recreational SCUBA diving practiced once a week on neurohormonal response and myokines-mediated communication between muscles and the brain. Front Cardiovasc Med 2023; 10:1074061. [PMID: 37063956 PMCID: PMC10090300 DOI: 10.3389/fcvm.2023.1074061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
ObjectiveDuring physical activity, activation of muscular, endocrine, and nervous systems, results in intensive crosstalk between muscles and other organs, which enables response to physiological stress. In SCUBA diving, extreme environmental conditions represent an additional challenge for homeostasis maintenance, but underlying mechanisms are largely unknown. We aimed to contribute to the understanding of neurohormonal response and muscle-brain crosstalk by measuring the concentrations of the selected hormones secreted by the pituitary-target organ axis and myokines involved in the muscle-brain endocrine loop in recreational SCUBA (rSCUBA) divers.MethodsFourteen male divers performed five open-water recreational dives (one per week, depth of 20–30 m, lasting 30 min, between 9 and 10 am), after a winter non-diving period of 5 months. Blood samples were collected immediately before and after the first, third, and fifth dives. Adrenocorticotropic hormone (ACTH), cortisol, thyroid-stimulating hormone (TSH), free thyroxine (fT4), prolactin, total testosterone, growth hormone (GH), insulin-like growth factor-1 (IGF-1), irisin, brain-derived neurotrophic factor (BDNF), S100B, glial fibrillary acidic protein (GFAP), and neuron-specific enolase (NSE) were measured using commercially available immunoassays.ResultsCortisol and ACTH levels decreased after every dive, while total testosterone decreased only after the first dive. No significant changes in post-dive values, as well as the cumulative effect on any other measured hormone, were observed. Although irisin and BDNF levels decreased after the first and third dives, the fifth dive caused a significant increase in both myokines. Changes in IGF-1 levels were not observed. All three dives caused a significant increase in S100B levels. A statistically significant decrease in GFAP concentration was observed after every dive, while NSE pre-dive concentration declined over the studied period. The cumulative effect on myokine levels was reflected in a continuous decline in irisin and BDNF pre-dive levels throughout the studied period, but an increasing trend after the fifth dive was observed.ConclusionsObserved changes in myokines and hormone levels point to a specific response to rSCUBA practiced once a week, most likely due to extreme environmental conditions. Further studies on communication between muscles and other organ systems, particularly on the muscle-brain endocrine loop, are required for a deeper understanding of the adaptation mechanisms to this kind of physiological stress.
Collapse
Affiliation(s)
- Marina Njire Braticevic
- Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
- Correspondence: Marina Njire Braticevic
| | - Marko Zarak
- Clinical Department for Laboratory Diagnostics, Dubrava University Hospital, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Brankica Simac
- Clinical Department for Laboratory Diagnostics, Dubrava University Hospital, Zagreb, Croatia
| | - Antonija Perovic
- Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
| | - Jerka Dumic
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Ackermann SP, Raab M, Backschat S, Smith DJC, Javelle F, Laborde S. The diving response and cardiac vagal activity: A systematic review and meta-analysis. Psychophysiology 2023; 60:e14183. [PMID: 36219506 DOI: 10.1111/psyp.14183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 01/25/2023]
Abstract
This article aimed to synthesize the various triggers of the diving response and to perform a meta-analysis assessing their effects on cardiac vagal activity. The protocol was preregistered on PROSPERO (CRD42021231419; 01.07.2021). A systematic and meta-analytic review of cardiac vagal activity was conducted, indexed with the root mean square of successive differences (RMSSD) in the context of the diving response. The search on MEDLINE (via PubMed), Web of Science, ProQuest and PsycNet was finalized on November 6th, 2021. Studies with human participants were considered, measuring RMSSD pre- and during and/or post-exposure to at least one trigger of the diving response. Seventeen papers (n = 311) met inclusion criteria. Triggers examined include face immersion or cooling, SCUBA diving, and total body immersion into water. Compared to resting conditions, a significant moderate to large positive effect was found for RMSSD during exposure (Hedges' g = 0.59, 95% CI 0.36 to 0.82, p < .001), but not post-exposure (g = 0.11, 95% CI -0.14 to 0.36, p = .34). Among the considered moderators, total body immersion had a significantly larger effect than forehead cooling (QM = 23.46, df = 1, p < .001). No further differences were detected. Limitations were the small number of studies included, heterogenous triggers, few participants and low quality of evidence. Further research is needed to investigate the role of cardiac sympathetic activity and of the moderators.
Collapse
Affiliation(s)
- Stefan Peter Ackermann
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Markus Raab
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany.,School of Applied Sciences, London South Bank University, London, UK
| | - Serena Backschat
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - David John Charles Smith
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany
| | - Florian Javelle
- Department of Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Sylvain Laborde
- Department of Performance Psychology, Institute of Psychology, German Sport University Cologne, Cologne, Germany.,UFR STAPS, EA 4260, Cesams, Normandie Université, Caen, France
| |
Collapse
|
3
|
Kelly KR, Arrington LJ, Bernards JR, Jensen AE. Prolonged Extreme Cold Water Diving and the Acute Stress Response During Military Dive Training. Front Physiol 2022; 13:842612. [PMID: 35874531 PMCID: PMC9304957 DOI: 10.3389/fphys.2022.842612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Cold water exposure poses a unique physiological challenge to the human body. Normally, water submersion increases activation of parasympathetic tone to induce bradycardia in order to compensate for hemodynamic shifts and reduce oxygen consumption by peripheral tissues. However, elevated stress, such as that which may occur due to prolonged cold exposure, may shift the sympatho-vagal balance towards sympathetic activation which may potentially negate the dive reflex and impact thermoregulation. Objective: To quantify the acute stress response during prolonged extreme cold water diving and to determine the influence of acute stress on thermoregulation. Materials and Methods: Twenty-one (n = 21) subjects tasked with cold water dive training participated. Divers donned standard diving equipment and fully submerged to a depth of ≈20 feet, in a pool chilled to 4°C, for a 9-h training exercise. Pre- and post-training measures included: core and skin temperature; salivary alpha amylase (AA), cortisol (CORT), osteocalcin (OCN), testosterone (TEST) and dehydroepiandosterone (DHEA); body weight; blood glucose, lactate, and ketones. Results: Core, skin, and extremity temperature decreased (p < 0.001) over the 9-h dive; however, core temperature was maintained above the clinical threshold for hypothermia and was not correlated to body size (p = 0.595). There was a significant increase in AA (p < 0.001) and OCN (p = 0.021) and a significant decrease in TEST (p = 0.003) over the duration of the dive. An indirect correlation between changes in cortisol concentrations and changes in foot temperature (ρ = -0.5,p = 0.042) were observed. There was a significant positive correlation between baseline OCN and change in hand temperature (ρ = 0.66, p = 0.044) and significant indirect correlation between changes in OCN concentrations and changes in hand temperature (ρ = -0.59, p = 0.043). Conclusion: These data suggest that long-duration, cold water diving initiates a stress response—as measurable by salivary stress biomarkers—and that peripheral skin temperature decreases over the course of these dives. Cumulatively, these data suggest that there is a relationship between the acute stress response and peripheral thermoregulation.
Collapse
Affiliation(s)
- Karen R. Kelly
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance, Naval Health Research Center, San Diego, CA, United States
- *Correspondence: Karen R. Kelly,
| | - Laura J. Arrington
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance, Naval Health Research Center, San Diego, CA, United States
- Leidos, Inc., San Diego, CA, United States
| | - Jake R. Bernards
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance, Naval Health Research Center, San Diego, CA, United States
- Leidos, Inc., San Diego, CA, United States
| | - Andrew E. Jensen
- Applied Translational Exercise and Metabolic Physiology Team, Warfighter Performance, Naval Health Research Center, San Diego, CA, United States
- Leidos, Inc., San Diego, CA, United States
| |
Collapse
|
4
|
Marlinge M, Coulange M, Fitzpatrick RC, Delacroix R, Gabarre A, Lainé N, Cautela J, Louge P, Boussuges A, Rostain J, Guieu R, Joulia FC. Physiological stress markers during breath-hold diving and SCUBA diving. Physiol Rep 2019; 7:e14033. [PMID: 30912280 PMCID: PMC6434169 DOI: 10.14814/phy2.14033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
This study investigated the sources of physiological stress in diving by comparing SCUBA dives (stressors: hydrostatic pressure, cold, and hyperoxia), apneic dives (hydrostatic pressure, cold, physical activity, hypoxia), and dry static apnea (hypoxia only). We hypothesized that despite the hypoxia induces by a long static apnea, it would be less stressful than SCUBA dive or apneic dives since the latter combined high pressure, physical activity, and cold exposure. Blood samples were collected from 12SCUBA and 12 apnea divers before and after dives. On a different occasion, samples were collected from the apneic group before and after a maximal static dry apnea. We measured changes in levels of the stress hormones cortisol and copeptin in each situation. To identify localized effects of the stress, we measured levels of the cardiac injury markers troponin (cTnI) and brain natriuretic peptide (BNP), the muscular stress markers myoglobin and lactate), and the hypoxemia marker ischemia-modified albumin (IMA). Copeptin, cortisol, and IMA levels increased for the apneic dive and the static dry apnea, whereas they decreased for the SCUBA dive. Troponin, BNP, and myoglobin levels increased for the apneic dive, but were unchanged for the SCUBA dive and the static dry apnea. We conclude that hypoxia induced by apnea is the dominant trigger for the release of stress hormones and cardiac injury markers, whereas cold or and hyperbaric exposures play a minor role. These results indicate that subjects should be screened carefully for pre-existing cardiac diseases before undertaking significant apneic maneuvers.
Collapse
Affiliation(s)
- Marion Marlinge
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- APHM: Assistance Publique des Hopitaux de MarseilleMarseilleFrance
| | - Mathieu Coulange
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- Department of Hyperbaric MedicineSainte Marguerite University HospitalMarseilleFrance
| | | | - Romain Delacroix
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- APHM: Assistance Publique des Hopitaux de MarseilleMarseilleFrance
- Laboratory of BiochemistryTimone University HospitalMarseilleFrance
| | - Alexie Gabarre
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- APHM: Assistance Publique des Hopitaux de MarseilleMarseilleFrance
- Laboratory of BiochemistryTimone University HospitalMarseilleFrance
| | - Nicolas Lainé
- APHM: Assistance Publique des Hopitaux de MarseilleMarseilleFrance
- Department of Hyperbaric MedicineSainte Marguerite University HospitalMarseilleFrance
| | | | - Pierre Louge
- Department of CardiologyNorth HospitalMarseilleFrance
| | - Alain Boussuges
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- HIA Saint AnneToulonFrance
| | | | - Régis Guieu
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- APHM: Assistance Publique des Hopitaux de MarseilleMarseilleFrance
| | - Fabrice C. Joulia
- C2VNINSERMINRAAix‐Marseille Université (AMU)MarseilleFrance
- UFR STAPS Université de ToulonLa GardeFrance
| |
Collapse
|
5
|
Verratti V, Bondi D, Jandova T, Camporesi E, Paoli A, Bosco G. Sex Hormones Response to Physical Hyperoxic and Hyperbaric Stress in Male Scuba Divers: A Pilot Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1176:53-62. [PMID: 31073929 DOI: 10.1007/5584_2019_384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of hyperbaric oxygen plays a significant role in many aspects of medicine. However, there are few studies that analyzed the role of hyperbaric oxygen, in addition to physical exercise, on the endocrine profile. The aim of this study was to compare changes in plasma male sex hormones after hyperbaric physical exercise with different hyperbaric oxygen pre-conditionings. We recruited six healthy, well-trained recreational male divers. Concentrations of prolactin (PRL), follicle-stimulating hormone (FSH), luteotrophic hormone (LH), cortisol, 17-β estradiol (E2), and total testosterone (TT) were measured in venous blood immediately after four different study conditions. Exercise increased PRL and hyperbaric oxygen potentiated this effect. Hyperbaria stimulated the E2 reduction and hyperoxia partially inhibited this reduction. Hyperbaria, but not hyperoxia, stimulated the TT reduction. There were no changes in FSH, LH, and cortisol. The increase in PRL likely reflects a stress response after physical exercise, amplified by hyperbaric oxygen. TT reduction may be interpreted as an acute and transient fertility impairment. Age, blood pressure, and BMI were taken into account as covariates for statistical analyses, and they significantly affected the results, in particular TT. These data open new insight into the role of E2 and PRL in male endocrine adaptive responses.
Collapse
Affiliation(s)
- Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Danilo Bondi
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Tereza Jandova
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|