1
|
Mashiyama S, Hemmi R, Sato T, Kato A, Taniguchi T, Yamada M. Pushing the limits of microfluidic droplet production efficiency: engineering microchannels with seamlessly implemented 3D inverse colloidal crystals. LAB ON A CHIP 2024; 24:171-181. [PMID: 38050757 DOI: 10.1039/d3lc00913k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Although droplet microfluidics has been studied for the past two decades, its applications are still limited due to the low productivity of microdroplets resulting from the low integration of planar microchannel structures. In this study, a microfluidic system implementing inverse colloidal crystals (ICCs), a spongious matrix with regularly and densely formed three-dimensional (3D) interconnected micropores, was developed to significantly increase the throughput of microdroplet generation. A new bottom-up microfabrication technique was developed to seamlessly integrate the ICCs into planar microchannels by accumulating non-crosslinked spherical PMMA microparticles as sacrificial porogens in a selective area of a mold and later dissolving them. We have demonstrated that the densely arranged micropores on the spongious ICC of the microchannel function as massively parallel micronozzles, enabling droplet formation on the order of >10 kHz. Droplet size could be adjusted by flow conditions, fluid properties, and micropore size, and biopolymer particles composed of polysaccharides and proteins were produced. By further parallelization of the unit structures, droplet formation on the order of >100 kHz was achieved. The presented approach is an upgrade of the existing droplet microfluidics concept, not only in terms of its high throughput, but also in terms of ease of fabrication and operation.
Collapse
Affiliation(s)
- Shota Mashiyama
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Runa Hemmi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Takeru Sato
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Atsuya Kato
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Tatsuo Taniguchi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
2
|
Zdiri K, Cayla A, Elamri A, Erard A, Salaun F. Alginate-Based Bio-Composites and Their Potential Applications. J Funct Biomater 2022; 13:jfb13030117. [PMID: 35997455 PMCID: PMC9397003 DOI: 10.3390/jfb13030117] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Over the last two decades, bio-polymer fibers have attracted attention for their uses in gene therapy, tissue engineering, wound-healing, and controlled drug delivery. The most commonly used bio-polymers are bio-sourced synthetic polymers such as poly (glycolic acid), poly (lactic acid), poly (e-caprolactone), copolymers of polyglycolide and poly (3-hydroxybutyrate), and natural polymers such as chitosan, soy protein, and alginate. Among all of the bio-polymer fibers, alginate is endowed with its ease of sol–gel transformation, remarkable ion exchange properties, and acid stability. Blending alginate fibers with a wide range of other materials has certainly opened many new opportunities for applications. This paper presents an overview on the modification of alginate fibers with nano-particles, adhesive peptides, and natural or synthetic polymers, in order to enhance their properties. The application of alginate fibers in several areas such as cosmetics, sensors, drug delivery, tissue engineering, and water treatment are investigated. The first section is a brief theoretical background regarding the definition, the source, and the structure of alginate. The second part deals with the physico-chemical, structural, and biological properties of alginate bio-polymers. The third part presents the spinning techniques and the effects of the process and solution parameters on the thermo-mechanical and physico-chemical properties of alginate fibers. Then, the fourth part presents the additives used as fillers in order to improve the properties of alginate fibers. Finally, the last section covers the practical applications of alginate composite fibers.
Collapse
Affiliation(s)
- Khmais Zdiri
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
- Laboratoire de Physique et Mécanique Textiles, École Nationale Supérieure d’Ingénieurs Sud-Alsace, Université de Haute Alsace, EA 4365, 68100 Mulhouse, France
- Correspondence:
| | - Aurélie Cayla
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| | - Adel Elamri
- Unité de Recherche Matériaux et Procédés Textiles, École Nationale d’Ingénieurs de Monastir, Université de Monastir, UR17ES33, Monastir 5019, Tunisia
| | - Annaëlle Erard
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| | - Fabien Salaun
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| |
Collapse
|
3
|
Wu Y, Zheng Y, Jin Z, Li S, Wu W, An C, Guo J, Zhu Z, Zhou T, Zhou Y, Cen L. Controllable manipulation of alginate-gelatin core-shell microcarriers for HUMSCs expansion. Int J Biol Macromol 2022; 216:1-13. [PMID: 35777503 DOI: 10.1016/j.ijbiomac.2022.06.173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/20/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
Human umbilical cord mesenchymal stem cells (HUMSCs) are one of the most attractive sources of stem cells, and it is meaningful to design and develop a type of microcarriers with suitable mechanical strength for HUMSCs proliferation in order to acquire enough cells for cell-based therapy. Alginate-gelatin core-shell (AG) soft microcarriers were thus fabricated via a microfluidic device with droplet shearing/gelation facilities and surface coating for in vitro expansion of HUMSCs. The attachment and proliferation of HUMSCs on AG microcarriers with different mechanical strengths modulated by gelatin coating was studied, and the harvested cells were characterized to verity their differentiation potential. The obtained core-shell microcarriers were all uniform in size with a high mono-dispersity (CV < 5 %). An increase in the gelatin surface coating concentration from 0.5 % to 1.5 % would lead to the reduction in both the particle size of the microcarriers and swelling ratio upon the contact of culture medium, but increased elastic modulus. Microcarriers of 245.12 μm with a gelatin coating elastic modulus of 27.5 kPa (AG10) were found to be the optimal substrate for HUMSCs with an initial attachment efficiency of 44.41 % and a 5-day expansion efficiency of 647 %. The cells harvested from AG10 still reserved their outstanding pluripotency. Fresh AG10 could smoothly transfer cells from a running microcarrier-cell system of confluence to serve as a convenient way of scaling-up the existing culture. The current study thus developed suitable microcarriers, AG10, for in vitro HUMSCs expansion with well reserve of cell multipotency, and also provided a manufacturing and surface manipulating strategy of precise production and fine regulation of microcarrier properties.
Collapse
Affiliation(s)
- Yanfei Wu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Yiling Zheng
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Shihao Li
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Weiqian Wu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Chenjing An
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Jiahao Guo
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Zhihua Zhu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China
| | - Tian Zhou
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China..
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China..
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China.
| |
Collapse
|
4
|
Magnani JS, Montazami R, Hashemi NN. Recent Advances in Microfluidically Spun Microfibers for Tissue Engineering and Drug Delivery Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:185-205. [PMID: 33940929 DOI: 10.1146/annurev-anchem-090420-101138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, the unique and tunable properties of microfluidically spun microfibers have led to tremendous advancements for the field of biomedical engineering, which have been applied to areas such as tissue engineering, wound dressing, and drug delivery, as well as cell encapsulation and cell seeding. In this article, we analyze the most recent advances in microfluidics and microfluidically spun microfibers, with an emphasis on biomedical applications. We explore in detail these new and innovative experiments, how microfibers are made, the experimental purpose of making microfibers, and the future work that can be done as a result of these new types of microfibers. We also focus on the applications of various materials used to fabricate microfibers, as well as their many promises and limitations.
Collapse
Affiliation(s)
- Joseph Scott Magnani
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA;
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA;
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA;
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
5
|
Crosslinking Strategies for the Microfluidic Production of Microgels. Molecules 2021; 26:molecules26123752. [PMID: 34202959 PMCID: PMC8234156 DOI: 10.3390/molecules26123752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023] Open
Abstract
This article provides a systematic review of the crosslinking strategies used to produce microgel particles in microfluidic chips. Various ionic crosslinking methods for the gelation of charged polymers are discussed, including external gelation via crosslinkers dissolved or dispersed in the oil phase; internal gelation methods using crosslinkers added to the dispersed phase in their non-active forms, such as chelating agents, photo-acid generators, sparingly soluble or slowly hydrolyzing compounds, and methods involving competitive ligand exchange; rapid mixing of polymer and crosslinking streams; and merging polymer and crosslinker droplets. Covalent crosslinking methods using enzymatic oxidation of modified biopolymers, photo-polymerization of crosslinkable monomers or polymers, and thiol-ene “click” reactions are also discussed, as well as methods based on the sol−gel transitions of stimuli responsive polymers triggered by pH or temperature change. In addition to homogeneous microgel particles, the production of structurally heterogeneous particles such as composite hydrogel particles entrapping droplet interface bilayers, core−shell particles, organoids, and Janus particles are also discussed. Microfluidics offers the ability to precisely tune the chemical composition, size, shape, surface morphology, and internal structure of microgels by bringing multiple fluid streams in contact in a highly controlled fashion using versatile channel geometries and flow configurations, and allowing for controlled crosslinking.
Collapse
|
6
|
Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J Pharm Sci 2021; 16:280-306. [PMID: 34276819 PMCID: PMC8261255 DOI: 10.1016/j.ajps.2020.10.001] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Alginate is an edible heteropolysaccharide that abundantly available in the brown seaweed and the capsule of bacteria such as Azotobacter sp. and Pseudomonas sp. Owing to alginate gel forming capability, it is widely used in food, textile and paper industries; and to a lesser extent in biomedical applications as biomaterial to promote wound healing and tissue regeneration. This is evident from the rising use of alginate-based dressing for heavily exuding wound and their mass availability in the market nowadays. However, alginate also has limitation. When in contact with physiological environment, alginate could gelate into softer structure, consequently limits its potential in the soft tissue regeneration and becomes inappropriate for the usage related to load bearing body parts. To cater this problem, wide range of materials have been added to alginate structure, producing sturdy composite materials. For instance, the incorporation of adhesive peptide and natural polymer or synthetic polymer to alginate moieties creates an improved composite material, which not only possesses better mechanical properties compared to native alginate, but also grants additional healing capability and promote better tissue regeneration. In addition, drug release kinetic and cell viability can be further improved when alginate composite is used as encapsulating agent. In this review, preparation of alginate and alginate composite in various forms (fibre, bead, hydrogel, and 3D-printed matrices) used for biomedical application is described first, followed by the discussion of latest trend related to alginate composite utilization in wound dressing, drug delivery, and tissue engineering applications.
Collapse
Affiliation(s)
- Raha Ahmad Raus
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Wan Mohd Fazli Wan Nawawi
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| | - Ricca Rahman Nasaruddin
- Department of Biotechnology Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
- Nanoscience and Nanotechnology Research Group (NanoRG), International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia
| |
Collapse
|
7
|
Wang H, Liu H, Zhang X, Wang Y, Zhao M, Chen W, Qin J. One-Step Generation of Aqueous-Droplet-Filled Hydrogel Fibers as Organoid Carriers Using an All-in-Water Microfluidic System. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3199-3208. [PMID: 33405509 DOI: 10.1021/acsami.0c20434] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogel fibers are promising carriers for biological applications due to their flexible mechanical properties, well-defined spatial distribution, and excellent biocompatibility. In particular, the droplet-filled hydrogel fibers with the controllable dimension and location of droplets display great advantages to enhance the loading capacity of multiple components and biofunctions. In this work, we proposed a new all-in-water microfluidic system that allows for one-step fabrication of aqueous-droplet-filled hydrogel fibers (ADHFs) with unique morphology and tunable configurations. In the system, the aqueous droplets with equidistance are successfully arranged within the alginate calcium fibers, relying on the design of the pump valve cycle and the select of two immiscible liquids with a stable aqueous interface. The architecture of the ADHF can be flexibly controlled by adjusting the three phase flow rates and the valve switch cycle. The produced ADHFs exhibit high controllability, uniformity, biocompatibility, and stability. The established system enabled the formation of functional human islet organoids in situ through encapsulating pancreatic endocrine progenitor cells within microfibers. The generated islet organoids within droplets exhibit high cell viability and islet-specific function of insulin secretion. The proposed approach provides a new way to fabricate multifunctional hydrogel fibers for materials sciences, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Hui Wang
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Liu
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, Unites States
| | - Yaqing Wang
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqian Zhao
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenwen Chen
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Qin
- Division of Biotechnology, CAS Key Laboratory of SSAC, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Institute For Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Shen H, Cai S, Wu C, Yang W, Yu H, Liu L. Recent Advances in Three-Dimensional Multicellular Spheroid Culture and Future Development. MICROMACHINES 2021; 12:96. [PMID: 33477508 PMCID: PMC7831097 DOI: 10.3390/mi12010096] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Three-dimensional multicellular spheroids (MCSs) have received extensive attention in the field of biomedicine due to their ability to simulate the structure and function of tissues in vivo more accurately than traditional in vitro two-dimensional models and to simulate cell-cell and cell extracellular matrix (ECM) interactions. It has become an important in vitro three-dimensional model for tumor research, high-throughput drug screening, tissue engineering, and basic biology research. In the review, we first summarize methods for MCSs generation and their respective advantages and disadvantages and highlight the advances of hydrogel and microfluidic systems in the generation of spheroids. Then, we look at the application of MCSs in cancer research and other aspects. Finally, we discuss the development direction and prospects of MCSs.
Collapse
Affiliation(s)
- Honglin Shen
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Shuxiang Cai
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Chuanxiang Wu
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (H.S.); (S.C.); (C.W.)
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; (H.Y.); (L.L.)
| |
Collapse
|
9
|
Saeki K, Hiramatsu H, Hori A, Hirai Y, Yamada M, Utoh R, Seki M. Sacrificial Alginate-Assisted Microfluidic Engineering of Cell-Supportive Protein Microfibers for Hydrogel-Based Cell Encapsulation. ACS OMEGA 2020; 5:21641-21650. [PMID: 32905425 PMCID: PMC7469388 DOI: 10.1021/acsomega.0c02385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/04/2020] [Indexed: 05/04/2023]
Abstract
Although many types of technologies for hydrogel-based cell cultivation have recently been developed, strategies to integrate cell-adhesive micrometer-sized supports with bulk-scale hydrogel platforms have not been fully established. Here, we present a highly unique approach to produce cell-adhesive, protein-based microfibers assisted by the sacrificial template of alginate; we applied these fibers as microengineered scaffolds for hydrogel-based cell encapsulation. Two types of microfluidic devices were designed and fabricated: a single-layered device for producing relatively thick (Φ of 10-60 μm) alginate-protein composite fibers with a uniform cross-sectional morphology and a four-layered device for preparing thinner (Φ of ∼4 μm) ones through the formation of patterned microfibers with eight distinct alginate-protein composite regions. Following chemical cross-linking of protein molecules and the subsequent removal of the sacrificial alginate from the double-network matrices, microfibers composed only of cross-linked proteins were obtained. We used gelatin, albumin, and hemoglobin as the protein material, and the gelatin-based cell-adhesive fibers were further encapsulated in hydrogels together with the mammalian cells. We clarified that the thinner fibers were especially effective in promoting cell proliferation, and the shape of the constructs was maintained even after removing the hydrogel matrices. The presented approach offers cells with biocompatible solid supports that enhance cell adhesion and proliferation, paving the way for the next generation of techniques for tissue engineering and multicellular organoid formation.
Collapse
Affiliation(s)
- Kotone Saeki
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hisataka Hiramatsu
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ayaka Hori
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yu Hirai
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Rie Utoh
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry and
Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
10
|
Fukushi M, Kinoshita K, Yamada M, Yajima Y, Utoh R, Seki M. Formation of pressurizable hydrogel-based vascular tissue models by selective gelation in composite PDMS channels. RSC Adv 2019; 9:9136-9144. [PMID: 35517655 PMCID: PMC9062067 DOI: 10.1039/c9ra00257j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022] Open
Abstract
Vascular tissue models created in vitro are of great utility in the biomedical research field, but versatile, facile strategies are still under development. In this study, we proposed a new approach to prepare vascular tissue models in PDMS-based composite channel structures embedded with barium salt powders. When a cell-containing hydrogel precursor solution was continuously pumped in the channel, the precursor solution in the vicinity of the channel wall was selectively gelled because of the barium ions as the gelation agent supplied to the flow. Based on this concept, we were able to prepare vascular tissue models, with diameters of 1–2 mm and with tunable morphologies, composed of smooth muscle cells in the hydrogel matrix and endothelial cells on the lumen. Perfusion culture was successfully performed under a pressurized condition of ∼120 mmHg. The presented platform is potentially useful for creating vascular tissue models that reproduce the physical and morphological characteristics similar to those of vascular tissues in vivo. A new approach for the preparation of vascular tissue models in PDMS-based composite channel structures embedded with barium salt powders.![]()
Collapse
Affiliation(s)
- Mayu Fukushi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku 263-8522 Japan +81-43-290-3398
| | - Keita Kinoshita
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku 263-8522 Japan +81-43-290-3398
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku 263-8522 Japan +81-43-290-3398
| | - Yuya Yajima
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku 263-8522 Japan +81-43-290-3398
| | - Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku 263-8522 Japan +81-43-290-3398
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University 1-33 Yayoi-cho, Inage-ku 263-8522 Japan +81-43-290-3398
| |
Collapse
|