1
|
Tamargo J, Caballero R, Delpón E. New drugs in preclinical and early stage clinical development in the treatment of heart failure. Expert Opin Investig Drugs 2018; 28:51-71. [DOI: 10.1080/13543784.2019.1551357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, CIBERCV, Madrid,
Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, CIBERCV, Madrid,
Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, CIBERCV, Madrid,
Spain
| |
Collapse
|
2
|
Terentyev D, Hamilton S. Regulation of sarcoplasmic reticulum Ca 2+ release by serine-threonine phosphatases in the heart. J Mol Cell Cardiol 2016; 101:156-164. [PMID: 27585747 DOI: 10.1016/j.yjmcc.2016.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/26/2016] [Accepted: 08/27/2016] [Indexed: 12/17/2022]
Abstract
The amount and timing of Ca2+ release from the sarcoplasmic reticulum (SR) during cardiac cycle are the main determinants of cardiac contractility. Reversible phosphorylation of the SR Ca2+ release channel, ryanodine receptor type 2 (RyR2) is the central mechanism of regulation of Ca2+ release in cardiomyocytes. Three major serine-threonine phosphatases including PP1, PP2A and PP2B (calcineurin) have been implicated in modulation of RyR2 function. Changes in expression levels of these phosphatases, their activity and targeting to the RyR2 macromolecular complex were demonstrated in many animal models of cardiac disease and humans and are implicated in cardiac arrhythmia and heart failure. Here we review evidence in support of regulation of RyR2-mediated SR Ca2+ release by serine-threonine phosphatases and the role and mechanisms of dysregulation of phosphatases in various disease states.
Collapse
Affiliation(s)
- Dmitry Terentyev
- The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Department of Medicine, Cardiovascular Research Center, United States.
| | - Shanna Hamilton
- Cardiff University, School of Medicine, Wales Heart Research Institute, United Kingdom
| |
Collapse
|
3
|
Altered myocardial calcium cycling and energetics in heart failure--a rational approach for disease treatment. Cell Metab 2015; 21:183-194. [PMID: 25651173 PMCID: PMC4338997 DOI: 10.1016/j.cmet.2015.01.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiomyocyte function depends on coordinated movements of calcium into and out of the cell and the proper delivery of ATP to energy-utilizing enzymes. Defects in calcium-handling proteins and abnormal energy metabolism are features of heart failure. Recent discoveries have led to gene-based therapies targeting calcium-transporting or -binding proteins, such as the cardiac sarco(endo)plasmic reticulum calcium ATPase (SERCA2a), leading to improvements in calcium homeostasis and excitation-contraction coupling. Here we review impaired calcium cycling and energetics in heart failure, assessing their roles from both a mutually exclusive and interdependent viewpoint, and discuss therapies that may improve the failing myocardium.
Collapse
|
4
|
Feest ER, Steven Korte F, Tu AY, Dai J, Razumova MV, Murry CE, Regnier M. Thin filament incorporation of an engineered cardiac troponin C variant (L48Q) enhances contractility in intact cardiomyocytes from healthy and infarcted hearts. J Mol Cell Cardiol 2014; 72:219-27. [PMID: 24690333 DOI: 10.1016/j.yjmcc.2014.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 03/03/2014] [Accepted: 03/21/2014] [Indexed: 01/10/2023]
Abstract
Many current pharmaceutical therapies for systolic heart failure target intracellular [Ca(2+)] ([Ca(2+)]i) metabolism, or cardiac troponin C (cTnC) on thin filaments, and can have significant side-effects, including arrhythmias or adverse effects on diastolic function. In this study, we tested the feasibility of directly increasing the Ca(2+) binding properties of cTnC to enhance contraction independent of [Ca(2+)]i in intact cardiomyocytes from healthy and myocardial infarcted (MI) hearts. Specifically, cardiac thin filament activation was enhanced through adenovirus-mediated over-expression of a cardiac troponin C (cTnC) variant designed to have increased Ca(2+) binding affinity conferred by single amino acid substitution (L48Q). In skinned cardiac trabeculae and myofibrils we and others have shown that substitution of L48Q cTnC for native cTnC increases Ca(2+) sensitivity of force and the maximal rate of force development. Here we introduced L48Q cTnC into myofilaments of intact cardiomyocytes via adeno-viral transduction to deliver cDNA for the mutant or wild type (WT) cTnC protein. Using video-microscopy to monitor cell contraction, relaxation, and intracellular Ca(2+) transients (Fura-2), we report that incorporation of L48Q cTnC significantly increased contractility of cardiomyocytes from healthy and MI hearts without adversely affecting Ca(2+) transient properties or relaxation. The improvements in contractility from L48Q cTnC expression are likely the result of enhanced contractile efficiency, as intracellular Ca(2+) transient amplitudes were not affected. Expression and incorporation of L48Q cTnC into myofilaments was confirmed by Western blot analysis of myofibrils from transduced cardiomyocytes, which indicated replacement of 18±2% of native cTnC with L48Q cTnC. These experiments demonstrate the feasibility of directly targeting cardiac thin filament proteins to enhance cardiomyocyte contractility that is impaired following MI.
Collapse
Affiliation(s)
- Erik R Feest
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA
| | - F Steven Korte
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA; Centers for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - An-Yue Tu
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA
| | - Jin Dai
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA
| | - Maria V Razumova
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA
| | - Charles E Murry
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA; Centers for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle. WA 98195, USA; Centers for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
5
|
Ruzsnavszky O, Dienes B, Oláh T, Vincze J, Gáll T, Balogh E, Nagy G, Bátori R, Lontay B, Erdődi F, Csernoch L. Differential effects of phosphatase inhibitors on the calcium homeostasis and migration of HaCaT keratinocytes. PLoS One 2013; 8:e61507. [PMID: 23646108 PMCID: PMC3640006 DOI: 10.1371/journal.pone.0061507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/10/2013] [Indexed: 11/18/2022] Open
Abstract
Changes in intracellular calcium concentration ([Ca2+]i) as well as in the phosphorylation state of proteins have been implicated in keratinocyte wound healing revealed in scratch assays. Scratching confluent HaCaT monolayers decreased the number of cells displaying repetitive Ca2+ oscillations as well as the frequency of their Ca2+-transients in cells close to the wounded area and initiated migration of the cells into the wound bed. In contrast, calyculin-A (CLA) and okadaic acid (OA), known cell permeable inhibitors of protein phosphatase-1 and 2A, increased the level of resting [Ca2+]i and suppressed cell migration and wound healing of HaCaT cells. Furthermore, neither CLA nor OA influenced how scratching affected Ca2+ oscillations. It is assumed that changes in and alterations of the phosphorylation level of Ca2+-transport and contractile proteins upon phosphatase inhibition mediates cell migration and wound healing.
Collapse
Affiliation(s)
- Olga Ruzsnavszky
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Tamás Oláh
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - János Vincze
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Tamás Gáll
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Enikő Balogh
- 1st Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Nagy
- Department of Microbial Biotechnology and Cell Biology, University of Debrecen, Debrecen, Hungary
| | - Róbert Bátori
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Beáta Lontay
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Ferenc Erdődi
- Department of Medical Chemistry, University of Debrecen, Debrecen, Hungary
| | - Laszlo Csernoch
- Department of Physiology, University of Debrecen, Debrecen, Hungary
- * E-mail:
| |
Collapse
|
6
|
Abstract
Cardiac myocyte function is dependent on the synchronized movements of Ca(2+) into and out of the cell, as well as between the cytosol and sarcoplasmic reticulum. These movements determine cardiac rhythm and regulate excitation-contraction coupling. Ca(2+) cycling is mediated by a number of critical Ca(2+)-handling proteins and transporters, such as L-type Ca(2+) channels (LTCCs) and sodium/calcium exchangers in the sarcolemma, and sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), ryanodine receptors, and cardiac phospholamban in the sarcoplasmic reticulum. The entry of Ca(2+) into the cytosol through LTCCs activates the release of Ca(2+) from the sarcoplasmic reticulum through ryanodine receptor channels and initiates myocyte contraction, whereas SERCA2a and cardiac phospholamban have a key role in sarcoplasmic reticulum Ca(2+) sequesteration and myocyte relaxation. Excitation-contraction coupling is regulated by phosphorylation of Ca(2+)-handling proteins. Abnormalities in sarcoplasmic reticulum Ca(2+) cycling are hallmarks of heart failure and contribute to the pathophysiology and progression of this disease. Correcting impaired intracellular Ca(2+) cycling is a promising new approach for the treatment of heart failure. Novel therapeutic strategies that enhance myocyte Ca(2+) homeostasis could prevent and reverse adverse cardiac remodeling and improve clinical outcomes in patients with heart failure.
Collapse
|
7
|
Abstract
Heart disease remains the leading cause of death and disability in the Western world. Current therapies aim at treating the symptoms rather than the subcellular mechanisms, underlying the etiology and pathological remodeling in heart failure. A universal characteristic, contributing to the decreased contractile performance in human and experimental failing hearts, is impaired calcium sequestration into the sarcoplasmic reticulum (SR). SR calcium uptake is mediated by a Ca(2+)-ATPase (SERCA2), whose activity is reversibly regulated by phospholamban (PLN). Dephosphorylated PLN is an inhibitor of SERCA and phosphorylation of PLN relieves this inhibition. However, the initial simple view of a PLN/SERCA regulatory complex has been modified by our recent identification of SUMO, S100 and the histidine-rich Ca-binding protein as regulators of SERCA activity. In addition, PLN activity is regulated by 2 phosphoproteins, the inhibitor-1 of protein phosphatase 1 and the small heat shock protein 20, which affect the overall SERCA-mediated Ca-transport. This review will highlight the regulatory mechanisms of cardiac contractility by the multimeric SERCA/PLN-ensemble and the potential for new therapeutic avenues targeting this complex by using small molecules and gene transfer methods.
Collapse
Affiliation(s)
- Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0575, USA.
| | | |
Collapse
|
8
|
Upregulation of cardiomyocyte ribonucleotide reductase increases intracellular 2 deoxy-ATP, contractility, and relaxation. J Mol Cell Cardiol 2011; 51:894-901. [PMID: 21925507 PMCID: PMC3208740 DOI: 10.1016/j.yjmcc.2011.08.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that substitution of ATP with 2 deoxy-ATP
(dATP) increased the magnitude and rate of force production at all levels of
Ca2+-mediated activation in demembranated cardiac muscle.
In the current study we hypothesized that cellular [dATP] could
be increased by viral-mediated over expression of the ribonucleotide reductase
(Rrm1 and Rrm2) complex, which would increase contractility of adult rat
cardiomyocytes. Cell length and ratiometric (fura2) Ca2+
fluorescence were monitored by video microscopy. At 0.5 Hz stimulation, the
extent of shortening was increased ~40% and maximal rate of shortening
was increased ~80% in cardiomyocytes overexpressing Rrm1+Rrm2 as
compared to non-transduced cardiomyocytes. The maximal rate of relaxation was
also increased ~150% with Rrm1+Rrm2 over expression, resulting
in decreased time to 50% relaxation over non-transduced cardiomyocytes.
These differences were even more dramatic when compared to cardiomyocytes
expressing GFP-only. Interestingly, Rrm1+Rrm2 over expression had no
effect on minimal or maximal intracellular
[Ca2+] (Fura2 fluorescence), indicating
increased contractility is primarily due to increased myofilament activity
without altering Ca2+ release from the sarcoplasmic
reticulum. Additionally, functional potentiation was maintained with
Rrm1+Rrm2 over expression as stimulation frequency was increased (1 Hz
and 2 Hz). HPLC analysis indicated cellular [dATP] was increased
by approximately 10-fold following transduction, becoming ~1.5% of the
adenine nucleotide pool. Furthermore, 2% dATP was sufficient to
significantly increase crossbridge binding and contractile force during
sub-maximal Ca2+ activation in demembranated cardiac muscle.
These experiments demonstrate the feasibility of directly targeting the
actin-myosin chemomechanical crossbridge cycle to enhance cardiac contractility
and relaxation without affecting minimal or maximal Ca2+.
Collapse
|
9
|
Kawamura Y, Ishiwata T, Takizawa M, Ishida H, Asano Y, Nonoyama S. Fetal and neonatal development of Ca2+ transients and functional sarcoplasmic reticulum in beating mouse hearts. Circ J 2010; 74:1442-50. [PMID: 20526040 DOI: 10.1253/circj.cj-09-0793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND It is generally accepted that Ca(2+)-induced Ca(2+) release is not the predominant mechanism during embryonic stages. Most studies have been conducted either on primary cultures or acutely isolated cells, in which an apparent reduction of ryanodine receptor density and alterations in the cell shape have been reported. The aim of the present study was to investigate developmental changes in Ca(2+) transients using whole hearts of mouse embryos and neonates. METHODS AND RESULTS Fluo-3 fluorescence signals from stimulated whole hearts were detected using a photomultiplier and stored as Ca(2+) transients. The upstroke and decay of Ca(2+) transients became more rapid from the late embryonic stages to the neonatal stage. After thapsigargin application (an inhibitor of the sarcoplasmic Ca(2+)-ATPase [SERCA]), time to 50% relaxation (T(50)) of Ca(2+) transients was significantly prolonged. There were no significant changes in T(50) after Ru360 application (an inhibitor of mitochondrial Ca(2+) uniporter). The rate of increase in the amplitude of Ca(2+) transients after caffeine application became larger during developmental stages. CONCLUSIONS Ca(2+) homeostasis developmentally changes from a slow rise and decay of Ca(2+) transients to rapid kinetics after the mid-embryonic stage. SERCA began to contribute significantly to Ca(2+) homeostasis at early embryonic stages and sarcoplasmic reticulum Ca(2+) contents increased from embryonic to neonatal stages, whereas mitochondrial Ca(2+) uptake did not contribute to Ca(2+) transients on a beat-to-beat basis.
Collapse
Affiliation(s)
- Yoichi Kawamura
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Ikeda Y, Yano M. Inhibitor-1 is potential target for enhancing sarcoplasmic reticulum Ca2+ loading in failing hearts. Circ J 2009; 73:1018-9. [PMID: 19465784 DOI: 10.1253/circj.cj-09-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|