1
|
López-Ramírez O, González-Garrido A. The role of acid sensing ion channels in the cardiovascular function. Front Physiol 2023; 14:1194948. [PMID: 37389121 PMCID: PMC10300344 DOI: 10.3389/fphys.2023.1194948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Acid Sensing Ion Channels (ASIC) are proton sensors involved in several physiological and pathophysiological functions including synaptic plasticity, sensory systems and nociception. ASIC channels have been ubiquitously localized in neurons and play a role in their excitability. Information about ASIC channels in cardiomyocyte function is limited. Evidence indicates that ASIC subunits are expressed in both, plasma membrane and intracellular compartments of mammalian cardiomyocytes, suggesting unrevealing functions in the cardiomyocyte physiology. ASIC channels are expressed in neurons of the peripheral nervous system including the nodose and dorsal root ganglia (DRG), both innervating the heart, where they play a dual role as mechanosensors and chemosensors. In baroreceptor neurons from nodose ganglia, mechanosensation is directly associated with ASIC2a channels for detection of changes in arterial pressure. ASIC channels expressed in DRG neurons have several roles in the cardiovascular function. First, ASIC2a/3 channel has been proposed as the molecular sensor of cardiac ischemic pain for its pH range activation, kinetics and the sustained current. Second, ASIC1a seems to have a critical role in ischemia-induced injury. And third, ASIC1a, 2 and 3 are part of the metabolic component of the exercise pressure reflex (EPR). This review consists of a summary of several reports about the role of ASIC channels in the cardiovascular system and its innervation.
Collapse
Affiliation(s)
- Omar López-Ramírez
- Instituto de Oftalmología Fundación de Asistencia Privada Conde de Valenciana, I.A.P., Mexico City, Mexico
| | - Antonia González-Garrido
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
2
|
Hung CH, Chin Y, Fong YO, Lee CH, Han DS, Lin JH, Sun WH, Chen CC. Acidosis-related pain and its receptors as targets for chronic pain. Pharmacol Ther 2023; 247:108444. [PMID: 37210007 DOI: 10.1016/j.pharmthera.2023.108444] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Sensing acidosis is an important somatosensory function in responses to ischemia, inflammation, and metabolic alteration. Accumulating evidence has shown that acidosis is an effective factor for pain induction and that many intractable chronic pain diseases are associated with acidosis signaling. Various receptors have been known to detect extracellular acidosis and all express in the somatosensory neurons, such as acid sensing ion channels (ASIC), transient receptor potential (TRP) channels and proton-sensing G-protein coupled receptors. In addition to sense noxious acidic stimulation, these proton-sensing receptors also play a vital role in pain processing. For example, ASICs and TRPs are involved in not only nociceptive activation but also anti-nociceptive effects as well as some other non-nociceptive pathways. Herein, we review recent progress in probing the roles of proton-sensing receptors in preclinical pain research and their clinical relevance. We also propose a new concept of sngception to address the specific somatosensory function of acid sensation. This review aims to connect these acid-sensing receptors with basic pain research and clinical pain diseases, thus helping with better understanding the acid-related pain pathogenesis and their potential therapeutic roles via the mechanism of acid-mediated antinociception.
Collapse
Affiliation(s)
- Chih-Hsien Hung
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin Chin
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-On Fong
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Der-Shen Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Jiann-Her Lin
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
3
|
Gkrouzoudi A, Tsingotjidou A, Jirkof P. A systematic review on reporting of refinement measures in mouse ECG telemetry implantation surgery. Lab Anim 2023; 57:9-25. [PMID: 36117425 DOI: 10.1177/00236772221115492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Telemetric monitoring is used in many scientific fields, such as cardiovascular research, neurology, endocrinology, as well as animal welfare research. Nowadays, implanted electrocardiogram (ECG) radiotelemetry units are the gold standard for monitoring ECG traces, heart rate and heart rate variability in freely moving mice. Telemetry technology can be a valuable tool when studies utilize it adequately, while prioritizing animal welfare. Recently, concerns have been raised in many research fields, including animal research, regarding the reproducibility of research findings, with insufficient reporting being one of the underlying causes.A systematic review was performed by making use of three literature databases, in order to include all publications until 31.12.2019, where the surgical placing of ECG recording telemetry devices in adult mice was involved. Data extracted from the publications included selected items recommended by the ARRIVE guidelines. We focused on aspects related to the refinement of the surgery and experimental conditions that aim to improve animal welfare. In general, the quality of reporting was low in the analyzed 234 publications. Based on our analyses, we assume there has been no improvement in this field's reporting quality since 2010 when the ARRIVE guidelines on reporting were introduced. Additionally, even though expert recommendations on telemetry surgery refinement have been available since many years now, no increase in uptake (or reporting) of these measures prior (e.g., acclimatization), during (e.g., asepsis) or after (e.g., social housing) the surgery could be observed.
Collapse
Affiliation(s)
- Alexandra Gkrouzoudi
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Paulin Jirkof
- Division for Surgical Research, University Hospital Zurich, University of Zurich, Switzerland.,Office for Animal Welfare and 3Rs, University of Zurich, Switzerland
| |
Collapse
|
4
|
Carattino MD, Montalbetti N. Acid-sensing ion channels in sensory signaling. Am J Physiol Renal Physiol 2020; 318:F531-F543. [PMID: 31984789 DOI: 10.1152/ajprenal.00546.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are cation-permeable channels that in the periphery are primarily expressed in sensory neurons that innervate tissues and organs. Soon after the cloning of the ASIC subunits, almost 20 yr ago, investigators began to use genetically modified mice to assess the role of these channels in physiological processes. These studies provide critical insights about the participation of ASICs in sensory processes, including mechanotransduction, chemoreception, and nociception. Here, we provide an extensive assessment of these findings and discuss the current gaps in knowledge with regard to the functions of ASICs in the peripheral nervous system.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Roles of ASICs in Nociception and Proprioception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1099:37-47. [PMID: 30306513 DOI: 10.1007/978-981-13-1756-9_4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acid-sensing ion channels (ASICs) are a group of proton-gated ion channels belonging to the degenerin/epithelial sodium channel (DED/ENaC) family. There are at least six ASIC subtypes - ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and ASIC4 - all expressed in somatosensory neurons. ASIC3 is the most abundant in dorsal root ganglia (DRG) and the most sensitive to extracellular acidification. ASICs were found as the major player involved in acid-induced pain in humans. Accumulating evidence has further shown ASIC3 as the molecular determinant involved in pain-associated tissue acidosis in rodent models. Besides having a role in nociception, members of the DEG/ENaC family have been demonstrated as essential mechanotransducers in the nematode Caenorhabditis elegans and fly Drosophila melanogaster. ASICs are mammalian homologues of DEG/ENaC and therefore may play a role in mechanotransduction. However, the role of ASICs in neurosensory mechanotransduction is disputed. Here we review recent studies to probe the roles of ASICs in acid nociception and neurosensory mechanotransduction. In reviewing genetic models and delicate electrophysiology approaches, we show ASIC3 as a dual-function protein for both acid-sensing and mechano-sensing in somatosensory nerves and therefore involved in regulating both nociception and proprioception.
Collapse
|
6
|
Cheng YR, Jiang BY, Chen CC. Acid-sensing ion channels: dual function proteins for chemo-sensing and mechano-sensing. J Biomed Sci 2018; 25:46. [PMID: 29793480 PMCID: PMC5966886 DOI: 10.1186/s12929-018-0448-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
Background Acid-sensing ion channels (ASICs) are a group of amiloride-sensitive ligand-gated ion channels belonging to the family of degenerin/epithelial sodium channels. ASICs are predominantly expressed in both the peripheral and central nervous system and have been characterized as potent proton sensors to detect extracellular acidification in the periphery and brain. Main body Here we review the recent studies focusing on the physiological roles of ASICs in the nervous system. As the major acid-sensing membrane proteins in the nervous system, ASICs detect tissue acidosis occurring at tissue injury, inflammation, ischemia, stroke, and tumors as well as fatiguing muscle to activate pain-sensing nerves in the periphery and transmit pain signals to the brain. Arachidonic acid and lysophosphocholine have been identified as endogenous non-proton ligands activating ASICs in a neutral pH environment. On the other hand, ASICs are found involved in the tether model mechanotransduction, in which the extracellular matrix and cytoplasmic cytoskeletons act like a gating-spring to tether the mechanically activated ion channels and thus transmit the stimulus force to the channels. Accordingly, accumulating evidence has shown ASICs play important roles in mechanotransduction of proprioceptors, mechanoreceptors and nociceptors to monitor the homoeostatic status of muscle contraction, blood volume, and blood pressure as well as pain stimuli. Conclusion Together, ASICs are dual-function proteins for both chemosensation and mechanosensation involved in monitoring physiological homoeostasis and pathological signals.
Collapse
Affiliation(s)
- Yuan-Ren Cheng
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, 128, Academia Rd. Sec. 2, Taipei, 115, Taiwan
| | - Bo-Yang Jiang
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, 128, Academia Rd. Sec. 2, Taipei, 115, Taiwan
| | - Chih-Cheng Chen
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, 128, Academia Rd. Sec. 2, Taipei, 115, Taiwan. .,Taiwan Mouse Clinic - National Comprehensive Mouse Phenotyping and Drug Testing Center, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
7
|
Er LK, Teng MS, Wu S, Hsu LA, Tzeng IS, Cheng CF, Chang HI, Chou HH, Ko YL. Combined effect of acid-sensing ion channel 3 and transient receptor potential vanilloid 1 gene polymorphisms on blood pressure variations in Taiwanese. Tzu Chi Med J 2018; 30:29-36. [PMID: 29643714 PMCID: PMC5883834 DOI: 10.4103/tcmj.tcmj_187_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 09/06/2017] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Both acid-sensing ion channel acid-sensing ion channel 3 (ASIC3) and transient receptor potential vanilloid 1 (TRPV1) have been proposed to be involved in the pathophysiology of hypertension. Common colocalization of ASIC3 and TRPV1 channels in the same sensory neuron has been reported. We aimed to study the combined ASIC3 and TRPV1 gene polymorphisms in the risk of hypertension. MATERIALS AND METHODS To test the statistical association between genetic polymorphisms of the ASIC3 and TRPV1 genes and blood pressure (BP) variations in Taiwanese, 551 unrelated individuals (286 men and 265 women) having routine health examinations were recruited. The participants had no history of cardiovascular disease or use of medication for hypertension. RESULTS Six ASIC3 and four TRPV1 gene polymorphisms were genotyped, and only the ASIC3 rs2288646 polymorphism was associated with variations in BP in the participants. In subgroup analysis, we found participants carrying the combined ASIC3 rs2288646 AA or AG and TRPV1 rs8065080 CC genotypes (combined genotypes) had significantly higher systolic, mean and diastolic BP compared with the other subgroups (P = 0.009, 0.003, and 0.006, respectively, after Bonferroni correction). Interaction analysis also revealed significant gene-gene interaction in the systolic, mean, and diastolic BP in the ASIC3 and TRPV1 genotypes (interaction P = 0.006, 0.002, and 0.002, respectively). A trend of increasing frequencies of the combined genotype was observed in normotensive, prehypertensive, and hypertensive subgroups (P for trend = 0.001), as well as in those with higher systolic and diastolic BPs (P for trend = 9.13 × 10-4 and P for trend = 5.5 × 10-5, respectively). CONCLUSION Our data show a combined effect of ASIC3 and TRPV1 gene polymorphisms in BP variations in Taiwanese. These results suggest that the interaction between ASIC3 and TRPV1 is involved in BP regulation.
Collapse
Affiliation(s)
- Leay-Kiaw Er
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Ming-Sheng Teng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Semon Wu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Department of Life Science, Chinese Culture University, Taipei, Taiwan
| | - Lung-An Hsu
- First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hsin-I Chang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Medical Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Hsin-Hua Chou
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Medical Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Yu-Lin Ko
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Medical Center, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| |
Collapse
|
8
|
Lei Z, Sami Shaikh A, Zheng W, Yu X, Yu J, Li J. Non-proton ligand-sensing domain of acid-sensing ion channel 3 is required for itch sensation. J Neurochem 2016; 139:1093-1101. [PMID: 27770439 DOI: 10.1111/jnc.13869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/30/2016] [Accepted: 10/04/2016] [Indexed: 02/05/2023]
Abstract
Itch, the unpleasant sensation that evokes a desire to scratch, accompanies numerous skin and nervous system disorders. However, the molecular mechanisms of itch are unclear. Acid-sensing ion channel 3 (ASIC3) is a sensor of acidic and primary inflammatory pain. The whole-cell patch clamp technique was used to determine the effect of chloroquine (CQ) on ASICs currents in primary sensory neurons or the Chinese hamster ovary cells transfected with rat ASIC1a or ASIC3. Site-directed mutagenesis of plasmid was performed. Scratching behavior was evaluated by measuring the number of bouts during 30 min after injection. CQ, an anti-malarial drug defined as a histamine-independent pruritogen, selectively enhanced the sustained phase of ASIC3 current in a concentration-dependent manner either in ASIC3-transfected Chinese hamster ovary cells or in primary cultured rat dorsal root ganglion neurons. Further studies revealed that the effect of CQ on ASIC3 channels depends on the newly identified non-proton ligand-sensing domain. Importantly, CQ-evoked scratching behavior was largely alleviated by APETx2, a selective ASIC3 channel blocker. Like CQ, other compounds such as amiloride, 2-guanidine-4-methylquinazoline and neuropeptide FF, which have been previously reported to be non-proton ligands that activate ASIC3, undoubtedly evoked the scratching response. In conclusion, ASIC3, a proton-gated ion channel critical for pain sensation, also functions as an essential component of itch transduction.
Collapse
Affiliation(s)
- Zhen Lei
- Department of Physiology, School of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China.,Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Abdul Sami Shaikh
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenshuai Zheng
- Department of Physiology, School of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiao Yu
- Department of Physiology, School of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jingui Yu
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jingxin Li
- Department of Physiology, School of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
9
|
Abnormal cardiac autonomic regulation in mice lacking ASIC3. BIOMED RESEARCH INTERNATIONAL 2014; 2014:709159. [PMID: 24804235 PMCID: PMC3996306 DOI: 10.1155/2014/709159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/25/2014] [Indexed: 12/11/2022]
Abstract
Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3) is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.
Collapse
|
10
|
Richards DA, Bao W, Rambo MV, Burgert M, Jucker BM, Lenhard SC. Examining the relationship between exercise tolerance and isoproterenol-based cardiac reserve in murine models of heart failure. J Appl Physiol (1985) 2013; 114:1202-10. [DOI: 10.1152/japplphysiol.00556.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The loss of cardiac reserve is, in part, responsible for exercise intolerance in late-stage heart failure (HF). Exercise tolerance testing (ETT) has been performed in mouse models of HF; however, treadmill performance and at-rest cardiac indexes determined by magnetic resonance imaging (MRI) rarely correlate. The present study adopted a stress-MRI technique for comparison with ETT in HF models, using isoproterenol (ISO) to evoke cardiac reserve responses. Male C57BL/6J mice were randomly subjected to myocardial infarction (MI), transverse aortic constriction (TAC), or sham surgery under general anesthesia. Mice underwent serial ETT on a graded treadmill with follow-up ISO stress-MRI. TAC mice showed consistent exercise intolerance, with a 16.2% reduction in peak oxygen consumption vs. sham at 15-wk postsurgery (WPS). MI and sham mice had similar peak oxygen consumption from 7 WPS onward. Time to a respiratory exchange ratio of 1.0 correlated with ETT distance ( r = 0.64; P < 0.001). The change in ejection fraction under ISO stress was reduced in HF mice at 4 WPS [10.1 ± 3.9% change (Δ) and 8.9 ± 3.5%Δ in MI and TAC, respectively, compared with 32.0 ± 3.5%Δ in sham; P < 0.001]. However, cardiac reserve differences between surgery groups were not observed at 16 WPS in terms of ejection fraction or cardiac output. In addition, ETT did not correlate with cardiac indexes under ISO stress. In conclusion, ISO stress was unable to reflect consistent differences in ETT between HF and healthy mice, suggesting cardiac-specific indexes are not the sole factors in defining exercise intolerance in mouse HF models.
Collapse
Affiliation(s)
- Daniel A. Richards
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
- University of Bristol, Bristol, Avon, United Kingdom
| | - Weike Bao
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Mary V. Rambo
- Laboratory Animal Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Mark Burgert
- Statistical Consulting Group, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Beat M. Jucker
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
- Preclinical and Translational Imaging, GlaxoSmithKline, King of Prussia, Pennsylvania
| | - Stephen C. Lenhard
- Heart Failure Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapy Area Unit, GlaxoSmithKline, King of Prussia, Pennsylvania
- Preclinical and Translational Imaging, GlaxoSmithKline, King of Prussia, Pennsylvania
| |
Collapse
|
11
|
Wu WL, Cheng CF, Sun WH, Wong CW, Chen CC. Targeting ASIC3 for pain, anxiety, and insulin resistance. Pharmacol Ther 2011; 134:127-38. [PMID: 22233754 DOI: 10.1016/j.pharmthera.2011.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/05/2011] [Indexed: 02/07/2023]
Abstract
The acid-sensing ion channel 3 (ASIC3) is a pH sensor that responds to mild extracellular acidification and is predominantly expressed in nociceptors. There is much interest in targeting ASIC3 to relieve pain associated with tissue acidosis, and selective drugs targeting ASIC3 have been used to relieve acid-evoked pain in animal models and human studies. There is accumulating evidence that ASIC3 is widely expressed in many neuronal and non-neuronal cells, such as neurons in the brain and adipose cells, albeit to a lesser extent than in nociceptors. Asic3-knockout mice have reduced anxiety levels and enhanced insulin sensitivity, suggesting that antagonizing ASIC3 has additional benefits. This view is tempered by recent studies suggesting that Asic3-knockout mice may experience cardiovascular disturbances. Due to the development of ASIC3 antagonists as analgesics, we review here the additional benefits, safety, risks, and strategy associated with antagonizing ASIC3 function.
Collapse
Affiliation(s)
- Wei-Li Wu
- Institute of Biomedical Sciences, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|