1
|
Hiraiwa H, Nagai S, Ito R, Kondo K, Kazama S, Kondo T, Adachi S, Furusawa K, Tanaka A, Morimoto R, Okumura T, Murohara T. Ability of dynamic chest radiography to identify left ventricular systolic dysfunction in heart failure. Int J Cardiovasc Imaging 2025; 41:507-521. [PMID: 39862281 PMCID: PMC11880156 DOI: 10.1007/s10554-025-03332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Dynamic chest radiography (DCR) can estimate haemodynamic parameters in heart failure (HF). However, no studies have evaluated its ability to determine cardiac systolic function in HF. This experimental study investigates the correlation between left ventricular (LV) ejection fraction (LVEF) and DCR image parameters in HF. Ninety-one patients with acute HF (median age, 58 years; males, 75%) (cardiologist diagnosis using the Framingham criteria) underwent DCR and transthoracic echocardiography after treatment for the uncompensated phase of HF. The LV apex pixel value (PV) change was measured by DCR. Correlations between the PV change and LVEF, as well as sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) of DCR, were evaluated. LVEF and LV apex PV change were correlated in all patients (R = 0.428, P < 0.001) and in patients with LVEF < 50% (n = 38; R = 0.355, P = 0.029), < 40% (n = 31; R = 0.343, P = 0.059), and < 30% (n = 23; R = 0.321, P = 0.135). There was no significant correlation for patients with LVEF ≥ 50% (n = 53; R = - 0.004, P = 0.980). The LV apex PV change rate cutoff values for identifying LVEF < 50%, < 40%, and < 30% were 9.3% (AUC: 0.761, sensitivity: 0.698, specificity: 0.789, P < 0.001), 5.5% (AUC: 0.765, sensitivity: 0.883, specificity: 0.645, P < 0.001), and 5.5% (AUC: 0.767, sensitivity: 0.838, specificity: 0.696, P < 0.001), respectively. DCR may be useful to identify LV systolic dysfunction based on LVEF in acute HF.
Collapse
Affiliation(s)
- Hiroaki Hiraiwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Shin Nagai
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryota Ito
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kiyota Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shingo Kazama
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toru Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shiro Adachi
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenji Furusawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akihito Tanaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Ryota Morimoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
2
|
Yamasaki Y, Kamitani T, Sagiyama K, Hino T, Kisanuki M, Tabata K, Isoda T, Kitamura Y, Abe K, Hosokawa K, Toyomura D, Moriyama S, Kawakubo M, Yabuuchi H, Ishigami K. Dynamic chest radiography for pulmonary vascular diseases: clinical applications and correlation with other imaging modalities. Jpn J Radiol 2024; 42:126-144. [PMID: 37626168 PMCID: PMC10811043 DOI: 10.1007/s11604-023-01483-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Dynamic chest radiography (DCR) is a novel functional radiographic imaging technique that can be used to visualize pulmonary perfusion without using contrast media. Although it has many advantages and clinical utility, most radiologists are unfamiliar with this technique because of its novelty. This review aims to (1) explain the basic principles of lung perfusion assessment using DCR, (2) discuss the advantages of DCR over other imaging modalities, and (3) review multiple specific clinical applications of DCR for pulmonary vascular diseases and compare them with other imaging modalities.
Collapse
Affiliation(s)
- Yuzo Yamasaki
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Takeshi Kamitani
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Sagiyama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takuya Hino
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Megumi Kisanuki
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Hematology, Oncology and Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Tabata
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takuro Isoda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshiyuki Kitamura
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Hosokawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Daisuke Toyomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Moriyama
- Department of Hematology, Oncology and Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masateru Kawakubo
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hidetake Yabuuchi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
3
|
Okamoto H, Miyatake H, Kodama M, Matsubayashi J, Matsutani N, Fujino K, Tsujita Y, Shiomi N, Nakagawa Y. Discriminative Ability of Dynamic Chest Radiography to Identify Left Ventricular Dysfunction. Circ J 2023; 88:159-167. [PMID: 38030239 DOI: 10.1253/circj.cj-23-0429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
BACKGROUND Dynamic chest radiography (DCR) produces sequential radiographs within a short examination time. It is also inexpensive and only uses a low dose of radiation. Because of the lack of reports of evaluating cardiac function using DCR in humans, we investigated its discriminative ability for left ventricular (LV) dysfunction in a study cohort. METHODS AND RESULTS We analyzed the DCR pixel values of 4 circular regions of interest (ROIs) in the hearts of 61 patients with cardiovascular disease and 10 healthy volunteers. We evaluated the relationship between changes in pixel value in the heart and the LV ejection fraction (LVEF) by echocardiography. We constructed receiver operating characteristic (ROC) curves to evaluate whether the percent change in pixel value (%∆pixel value) could be used to identify patients with reduced LVEF. A total of 21 patients had reduced LVEF (LVEF <50%), and 40 had preserved LVEF (LVEF ≥50%). The correlation between LVEF and %∆pixel value in each ROI was significant, and the area under the ROC curve of the %∆pixel values for identifying patients with reduced LVEF was satisfactory (0.808-0.827) in 3 ROIs where the entire circular area was within the cardiac shadow. CONCLUSIONS LV dysfunction can be detected by changes in the pixel value on DCR.
Collapse
Affiliation(s)
- Hiroki Okamoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Shiga University of Medical Science
| | - Hidemitsu Miyatake
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science
| | - Misato Kodama
- Division of Cardiovascular Medicine, Department of Internal Medicine, Shiga University of Medical Science
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science
| | | | - Kazunori Fujino
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science
| | - Yasuyuki Tsujita
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science
| | - Naoto Shiomi
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science
| | - Yoshihisa Nakagawa
- Division of Cardiovascular Medicine, Department of Internal Medicine, Shiga University of Medical Science
| |
Collapse
|
4
|
Hiraiwa H, Sakamoto G, Ito R, Koyama Y, Kazama S, Kimura Y, Kondo T, Morimoto R, Okumura T, Murohara T. Dynamic chest radiography as a novel minimally invasive hemodynamic imaging method in patients with heart failure. Eur J Radiol 2023; 161:110729. [PMID: 36804311 DOI: 10.1016/j.ejrad.2023.110729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE Dynamic chest radiography allows for non-invasive cardiopulmonary blood flow assessment. However, data on its use for heart failure hemodynamic assessment are scarce. We utilized dynamic chest radiography to estimate heart failure hemodynamics. METHOD Twenty heart failure patients (median age, 67 years; 17 men) underwent dynamic chest radiography and right heart catheterization. The analyzed images were 16-bit images (grayscale range: 0-65,535). Right atrial, right pulmonary artery, and left ventricular apex pixel values (average of the grayscale values of all pixels within a region of interest) were measured. The correlations of the minimum, maximum, mean, amount of change, and rate of change in pixel values with right atrial pressure, pulmonary artery pressure, pulmonary artery wedge pressure, and cardiac index were analyzed. RESULTS The mean right atrial pixel value and mean right atrial pressure (R = -0.576, P = 0.008), mean right pulmonary artery pixel value and mean pulmonary artery pressure (R = -0.546, P = 0.013), and left ventricular apex pixel value change rate and mean pulmonary artery wedge pressure (R = -0.664, P = 0.001) or cardiac index (R = 0.606, P = 0.005) were correlated. The left ventricular apex pixel value change rate identified low cardiac index (area under the curve, 0.792; 95% confidence interval, 0.590-0.993; P = 0.031) and low cardiac index with high pulmonary artery wedge pressure (area under the curve, 0.902; 95% confidence interval, 0.000-1.000; P = 0.030). CONCLUSIONS Dynamic chest radiography is a minimally invasive tool for heart failure hemodynamic assessment.
Collapse
Affiliation(s)
- Hiroaki Hiraiwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Gaku Sakamoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Ryota Ito
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yuichiro Koyama
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shingo Kazama
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yuki Kimura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Toru Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Ryota Morimoto
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
5
|
Mirakhorli F, Vahidi B, Pazouki M, Barmi PT. A Fluid-Structure Interaction Analysis of Blood Clot Motion in a Branch of Pulmonary Arteries. Cardiovasc Eng Technol 2023; 14:79-91. [PMID: 35788909 DOI: 10.1007/s13239-022-00632-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Pulmonary embolism (PE) is one of the most prevalent diseases amid hospitalized patients taking many people's lives annually. This phenomenon, however, has not been investigated via numerical simulations. METHODS In this study, an image-based model of pulmonary arteries has been constructed from a 44-year-old man's computed tomography images. The fluid-structure interaction method was used to simulate the motion of the blood clot. In this regard, Navier-Stokes equations, as the governing equations, have been solved in an arbitrary Lagrangian-Eulerian (ALE) formulation. RESULTS According to our results, the velocity of visco-hyperelastic model of the emboli was relatively higher than the emboli with hyperelastic model, despite their similar behavioral pattern. The stresses on the clot were also investigated and showed that the blood clot continuously sustained stresses greater than 165 Pa over an about 0.01 s period, which can cause platelets to leak and make the clot grow or tear apart. CONCLUSIONS It could be concluded that in silico analysis of the cardiovascular diseases initiated from clot motion in blood flow is a valuable tool for a better understanding of these phenomena.
Collapse
Affiliation(s)
- Fateme Mirakhorli
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Vahidi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Marzieh Pazouki
- Department of Pulmonary Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouria Talebi Barmi
- Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Tanaka R, Kasahara K, Ohkura N, Matsumoto I, Tamura M, Takata M, Inoue D, Izumozaki A, Horii J, Matsuura Y, Sanada S. [Paradigm Shift in Respiratory Diagnosis: Current Status and Future Prospects of Dynamic Chest Radiography]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2021; 77:1279-1287. [PMID: 34803108 DOI: 10.6009/jjrt.2021_jsrt_77.11.1279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dynamic chest radiography (DCR) is a flat-panel detector (FPD) -based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view of FPDs permits real-time observation of motion/kinetic findings on the entire lungs, right and left diaphragm, ribs, and chest wall; heart wall motions; respiratory changes in lung density; and diameter of the intrathoracic trachea. Since the dynamic FPDs had been developed in the early 2000s, we focused on the potential of dynamic FPDs for functional X-ray imaging and have launched a research project for the development of an imaging protocol and digital image-processing techniques for the DCR. The quantitative analysis of motion/kinetic findings is helpful for a better understanding of pulmonary function, because the interpretation of dynamic chest radiographs is challenging and time-consuming for radiologists, pulmonologists, and surgeons. Recent clinical studies have demonstrated the usefulness of DCR combined with the digital image processing techniques for the evaluation of pulmonary function and circulation. Especially, there is a major concern in color-mapping images based on dynamic changes in radiographic lung density, where pulmonary impairments can be detected as color defects, even without the use of contrast media or radioactive medicine. Dynamic chest radiography is now commercially available for the use in general X-ray room and therefore can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. This review article describes the current status and future prospects of DCR, which might bring a paradigm shift in respiratory diagnosis.
Collapse
Affiliation(s)
- Rie Tanaka
- College of Medical, Pharmaceutical & Health Sciences, Kanazawa University
| | - Kazuo Kasahara
- Department of Respiratory Medicine, Kanazawa University Hospital
| | - Noriyuki Ohkura
- Department of Respiratory Medicine, Kanazawa University Hospital
| | | | | | | | - Dai Inoue
- Department of Radiology, Kanazawa University Hospital
| | | | - Junsei Horii
- Division of Radiology, Kanazawa University Hospital
| | | | | |
Collapse
|
7
|
Correlations between cardiovascular parameters and image parameters on dynamic chest radiographs in a porcine model under fluid loading. Radiol Phys Technol 2021; 14:288-296. [PMID: 34152509 PMCID: PMC8214982 DOI: 10.1007/s12194-021-00626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 11/23/2022]
Abstract
Latest digital radiographic technology permits dynamic chest radiography during the cardiac beating and/or respiration, which allows for real-time observation of the lungs. This study aimed to assess the capacity of dynamic flat-panel detector (FPD) imaging without the use of contrast media to estimate cardiovascular parameters based on image parameters of a porcine model under fluid loading. Three domestic pigs were intubated, and mechanical ventilation was provided using a ventilator under anesthesia. A porcine model involving circulatory changes induced by fluid loading (fluid infusion/blood removal) was developed. Sequential chest radiographs of the pigs were obtained using a dynamic FPD system within the first 5 min after fluid loading. Image parameters such as the size of the heart shadow and mean pixel values in the lungs were measured, and correlations between fluid loading and cardiovascular parameters (blood pressure [BP], cardiac output [CO], central venous pressure [CVP], and pulmonary arterial pressure [PAP]) were analyzed based on freedom-adjusted coefficients of determination (Rf2). Fluid loading was correlated with radiographic lung density and the size of the heart shadow. Radiographic lung density was correlated with the left and right heart system-related parameters BP, CO, CVP, and PAP. The size of the heart shadow correlated with the left heart system-related parameters CO and BP. Dynamic FPD imaging allows for the relative evaluation of cardiovascular parameters based on image parameters. This diagnostic method provides radiographic image information and estimates relative circulatory parameters.
Collapse
|
8
|
Miyatake H, Asada K, Tabata T, Eguchi Y, Matsutani N, Nakagawa Y. Novel Pulmonary Circulation Imaging Using Dynamic Chest Radiography for Acute Pulmonary Embolism. Circ J 2021; 85:400. [PMID: 33583870 DOI: 10.1253/circj.cj-20-1259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hidemitsu Miyatake
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science
| | - Kohei Asada
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Takahisa Tabata
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science
| | - Yutaka Eguchi
- Intensive Care Unit, Shiga University of Medical Science
| | | | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| |
Collapse
|