1
|
Classification of drugs for evaluating drug interaction in drug development and clinical management. Drug Metab Pharmacokinet 2021; 41:100414. [PMID: 34666290 DOI: 10.1016/j.dmpk.2021.100414] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/22/2022]
Abstract
During new drug development, clinical drug interaction studies are carried out in accordance with the mechanism of potential drug interactions evaluated by in vitro studies. The obtained information should be provided efficiently to medical experts through package inserts and various information materials after the drug's launch. A recently updated Japanese guideline presents general procedures that are considered scientifically valid at the present moment. In this review, we aim to highlight the viewpoints of the Japanese guideline and enumerate drugs that were involved or are anticipated to be involved in evident pharmacokinetic drug interactions and classify them by their clearance pathway and potential intensity based on systematic reviews of the literature. The classification would be informative for designing clinical studies during the development stage, and the appropriate management of drug interactions in clinical practice.
Collapse
|
2
|
Shibata Y, Tamemoto Y, Singh SP, Yoshitomo A, Hozuki S, Sato H, Hisaka A. Plausible drug interaction between cyclophosphamide and voriconazole via inhibition of CYP2B6. Drug Metab Pharmacokinet 2021; 39:100396. [PMID: 33992954 DOI: 10.1016/j.dmpk.2021.100396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
The inhibitory activities of eight cytochrome P450 (CYP) isoenzymes for representative or suspected inhibitors of CYPs, including pesticides, were evaluated simultaneously using an in vitro cocktail incubation method to demonstrate the importance of systematic evaluation of CYP inhibitory risks in drug interaction (DI). Potent inhibition of CYP2B6 was noticeable for some azoles, including voriconazole. When voriconazole and cyclophosphamide were co-administered in mice, cyclophosphamide-induced alopecia and leukopenia were significantly suppressed by approximately 50% with increased blood concentrations of cyclophosphamide. The formation of an active metabolite of cyclophosphamide was suppressed effectively by voriconazole in the mouse liver microsomes. Surveys of adverse event reporting databases in Japan (JADER) and the U.S. (FAERS) showed that the proportional reporting ratios of neutropenia, hemorrhagic cystitis, and alopecia for cyclophosphamide, which is principally activated by CYP2B6 in humans, were mostly reduced, or tended to be reduced when azoles, including voriconazole, were prescribed in combination. It is highly likely that DIs between cyclophosphamide and azoles occur in the clinical setting. This study also suggests that more proper consideration of CYP2B6-mediated DIs is warranted. The combination of the in vitro cocktail method and a survey of adverse event reporting databases was a useful method to comprehensively detect pharmacokinetic DIs.
Collapse
Affiliation(s)
- Yukihiro Shibata
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8675, Japan.
| | - Yuta Tamemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8675, Japan.
| | - Sheelendra Pratap Singh
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8675, Japan; CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
| | - Aoi Yoshitomo
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8675, Japan.
| | - Shizuka Hozuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8675, Japan.
| | - Hiromi Sato
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8675, Japan.
| | - Akihiro Hisaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba, 260-8675, Japan.
| |
Collapse
|