1
|
Bousquet D, Guillot N. Laminar shear stress promotes accumulation of polyunsaturated fatty acid in aortic endothelial cells through upregulation of LPCAT3 enzyme activity. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159638. [PMID: 40414415 DOI: 10.1016/j.bbalip.2025.159638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/19/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVE Endothelial cells (ECs) play an important role in tissue homeostasis. Hemodynamic laminar shear stress are involved in both the physiological and pathological function of endothelial cells EC. Lipid metabolism has emerged as a potential regulator of EC function. Here, we aim to decipher the role of laminar shear stress in the regulation of lipid metabolism in human aortic endothelial cells. APPROACH AND RESULTS Human aortic endothelial cells (HAOEC) were exposed to laminar shear stress, and lipid metabolism was analyzed. We found that laminar flow increased polyunsaturated fatty acid (PUFA) content in both neutral and polar lipids. These changes in fatty acid composition were dependent on lysophosphatidylcholine acyltransferase 3 (LPCAT3), which was specifically upregulated by laminar shear stress at both the mRNA and activity levels. Fatty acid uptake was also modulated by shear stress, partly via the LXR pathway. Notably, mechanical stimulation did not alter de novo fatty acid synthesis. However, fatty acid oxidation was upregulated in response to laminar shear stress, involving AMPK and ACC phosphorylation. These modifications in HAOEC fatty acid composition ultimately led to the release of a distinct pattern of lipid metabolites. CONCLUSION Overall these data revealed that laminar shear stress increased the turnover of FA acid and in human aortic endothelial cells through the activation of the LPCAT 3 enzyme.
Collapse
Affiliation(s)
- Delphine Bousquet
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France
| | - Nicolas Guillot
- University Lyon, LIBM EA7424, Vascular Biology and Red Blood Cell Team, Universite Lyon 1, Villeurbanne, France; Labex GR-Ex, PRES Sorbonne, Paris, France; INSA Lyon, Villeurbanne, France.
| |
Collapse
|
2
|
Ferrara PJ, Rong X, Maschek JA, Verkerke AR, Siripoksup P, Song H, Green TD, Krishnan KC, Johnson JM, Turk J, Houmard JA, Lusis AJ, Drummond MJ, McClung JM, Cox JE, Shaikh SR, Tontonoz P, Holland WL, Funai K. Lysophospholipid acylation modulates plasma membrane lipid organization and insulin sensitivity in skeletal muscle. J Clin Invest 2021; 131:135963. [PMID: 33591957 DOI: 10.1172/jci135963] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/11/2021] [Indexed: 01/09/2023] Open
Abstract
Aberrant lipid metabolism promotes the development of skeletal muscle insulin resistance, but the exact identity of lipid-mediated mechanisms relevant to human obesity remains unclear. A comprehensive lipidomic analysis of primary myocytes from individuals who were insulin-sensitive and lean (LN) or insulin-resistant with obesity (OB) revealed several species of lysophospholipids (lyso-PLs) that were differentially abundant. These changes coincided with greater expression of lysophosphatidylcholine acyltransferase 3 (LPCAT3), an enzyme involved in phospholipid transacylation (Lands cycle). Strikingly, mice with skeletal muscle-specific knockout of LPCAT3 (LPCAT3-MKO) exhibited greater muscle lysophosphatidylcholine/phosphatidylcholine, concomitant with improved skeletal muscle insulin sensitivity. Conversely, skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) promoted glucose intolerance. The absence of LPCAT3 reduced phospholipid packing of cellular membranes and increased plasma membrane lipid clustering, suggesting that LPCAT3 affects insulin receptor phosphorylation by modulating plasma membrane lipid organization. In conclusion, obesity accelerates the skeletal muscle Lands cycle, whose consequence might induce the disruption of plasma membrane organization that suppresses muscle insulin action.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - J Alan Maschek
- Diabetes and Metabolism Research Center and.,Metabolomics, Mass Spectrometry, and Proteomics Core and
| | - Anthony Rp Verkerke
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - Piyarat Siripoksup
- Diabetes and Metabolism Research Center and.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Haowei Song
- Division of Endocrinology Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Jordan M Johnson
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - John Turk
- Division of Endocrinology Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph A Houmard
- East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA
| | - Aldons J Lusis
- Cardiology Division, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Micah J Drummond
- Diabetes and Metabolism Research Center and.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | | | - James E Cox
- Diabetes and Metabolism Research Center and.,Metabolomics, Mass Spectrometry, and Proteomics Core and.,Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Saame Raza Shaikh
- East Carolina Diabetes and Obesity Institute and.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - William L Holland
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center and.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes and Obesity Institute and.,Human Performance Laboratory, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Ishibashi M, Varin A, Filomenko R, Lopez T, Athias A, Gambert P, Blache D, Thomas C, Gautier T, Lagrost L, Masson D. Liver x receptor regulates arachidonic acid distribution and eicosanoid release in human macrophages: a key role for lysophosphatidylcholine acyltransferase 3. Arterioscler Thromb Vasc Biol 2013; 33:1171-9. [PMID: 23580142 DOI: 10.1161/atvbaha.112.300812] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Liver X receptors (LXRs) are oxysterol-activated nuclear receptors that are highly expressed in macrophages and regulate lipid homeostasis and inflammation. Among putative LXR target genes, lysophosphatidylcholine acyltransferase 3 (LPCAT3) involved in the Lands cycle controls the fatty acid composition at the sn-2 position of glycerophospholipids and, therefore, the availability of fatty acids, such as arachidonic acid (AA), used for eicosanoid synthesis. The aim of our study was to determine whether LXRs could regulate the Lands cycle in human macrophages, to assess the consequences in terms of lipid composition and inflammatory response, and to work out the relative contribution of LPCAT3 to the observed changes. APPROACH AND RESULTS Transcriptomic analysis revealed that LPCAT3 was upregulated by LXR agonists in human macrophages. Accordingly, LXR stimulation significantly increased lysophospholipid acyltransferase activity catalyzed by LPCAT3. Lipidomic analysis demonstrated that LXR activation increased the AA content in the polar lipid fraction, specifically in phosphatidylcholines. The LXR-mediated effects on AA distribution were abolished by LPCAT3 silencing, and a redistribution of AA toward the neutral lipid fraction was observed in this context. Finally, we observed that preconditioning of human macrophages by LXR agonist treatment increased the release of arachidonate-derived eicosanoids, such as prostaglandin E2 and thromboxane after lipopolysaccharide stimulation, with a significant attenuation by LPCAT3 silencing. CONCLUSIONS Altogether, our data demonstrate that the LXR-mediated induction of LPCAT3 primes human macrophages for subsequent eicosanoid secretion by increasing the pool of AA, which can be mobilized from phospholipids.
Collapse
Affiliation(s)
- Minako Ishibashi
- Centre de Recherche INSERM UMR866, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hirata Y, Yamamori N, Kono N, Lee HC, Inoue T, Arai H. Identification of small subunit of serine palmitoyltransferase a as a lysophosphatidylinositol acyltransferase 1-interacting protein. Genes Cells 2013; 18:397-409. [PMID: 23510452 DOI: 10.1111/gtc.12046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/06/2013] [Indexed: 12/28/2022]
Abstract
Lysophosphatidylinositol acyltransferase 1 (LPIAT1), also known as MBOAT7, is a phospholipid acyltransferase that selectively incorporates arachidonic acid (AA) into the sn-2 position of phosphatidylinositol (PI). We previously demonstrated that LPIAT1 regulates AA content in PI and plays a crucial role in brain development in mice. However, how LPIAT1 is regulated and which proteins function cooperatively with LPIAT1 are unknown. In this study, using a split-ubiquitin membrane yeast two-hybrid system, we identified the small subunit of serine palmitoyltransferase a (ssSPTa) as an LPIAT1-interacting protein. ssSPTa co-immunoprecipitated and colocalized with LPIAT1 in cultured mammalian cells. Knockdown of ssSPTa decreased the LPIAT1-dependent incorporation of exogenous AA into PI but did not affect the in vitro enzyme activity of LPIAT1 in the microsomal fraction. Interestingly, knockdown of ssSPTa decreased the protein level of LPIAT1 in the crude mitochondrial fraction but not in total homogenate or the microsomal fraction. LPIAT1 was localized to the mitochondria-associated membrane (MAM), where AA-selective acyl-CoA synthetase is enriched. These results suggest that ssSPTa plays a role in fatty acid remodeling of PI, probably by facilitating the MAM localization of LPIAT1.
Collapse
Affiliation(s)
- Yusuke Hirata
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
6
|
Yamazaki T, Okada H, Sakamoto T, Sunaga K, Tsuda T, Mitsumoto A, Kudo N, Kawashima Y. Differential induction of stearoyl-CoA desaturase 1 and 2 genes by fibrates in the liver of rats. Biol Pharm Bull 2012; 35:116-20. [PMID: 22223347 DOI: 10.1248/bpb.35.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The administration of fibrates (fenofibrate, bezafibrate and clofibric acid) to rats induced stearoyl-CoA desaturase (SCD) in the liver, and increased relative expression of mRNAs encoding SCD1 and SCD2 in dose- and time-dependent manners. The magnitudes of the increases in SCD2 mRNA level caused by fenofibrate and clofibric acid were much higher than those of SCD1 at relatively higher doses of the fibrates, and a relatively long time (7 or 14 d) was required for significant induction of SCD2 mRNA expression compared with that of SCD1. Although the absolute number of transcripts for SCD2 was 1,800 times lower than that of SCD1 in the control liver, it was strikingly increased by fibrates. These results suggest that differential regulations operate for the gene expression between SCD1 and SCD2, and that the physiological significance of SCD2 is distinct from that of SCD1 in the liver.
Collapse
Affiliation(s)
- Tohru Yamazaki
- Faculty of Pharmaceutical Sciences, Josai University, 1–1 Keyakidai, Sakado, Saitama 350–0295, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Rusyn I, Corton JC. Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate. Mutat Res 2011; 750:141-158. [PMID: 22198209 DOI: 10.1016/j.mrrev.2011.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 12/28/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a peroxisome proliferator agent that is widely used as a plasticizer to soften polyvinylchloride plastics and non-polymers. Both occupational (e.g., by inhalation during its manufacture and use as a plasticizer of polyvinylchloride) and environmental (medical devices, contamination of food, or intake from air, water and soil) routes of exposure to DEHP are of concern for human health. There is sufficient evidence for carcinogenicity of DEHP in the liver in both rats and mice; however, there is little epidemiological evidence on possible associations between exposure to DEHP and liver cancer in humans. Data are available to suggest that liver is not the only target tissue for DEHP-associated toxicity and carcinogenicity in both humans and rodents. The debate regarding human relevance of the findings in rats or mice has been informed by studies on the mechanisms of carcinogenesis of the peroxisome proliferator class of chemicals, including DEHP. Important additional mechanistic information became available in the past decade, including, but not limited to, sub-acute, sub-chronic and chronic studies with DEHP in peroxisome proliferator-activated receptor (PPAR) α-null mice, as well as experiments utilizing several transgenic mouse lines. Activation of PPARα and the subsequent downstream events mediated by this transcription factor represent an important mechanism of action for DEHP in rats and mice. However, additional data from animal models and studies in humans exposed to DEHP from the environment suggest that multiple molecular signals and pathways in several cell types in the liver, rather than a single molecular event, contribute to the cancer in rats and mice. In addition, the toxic and carcinogenic effects of DEHP are not limited to liver. The International Agency for Research on Cancer working group concluded that the human relevance of the molecular events leading to cancer elicited by DEHP in several target tissues (e.g., liver and testis) in rats and mice can not be ruled out and DEHP was classified as possibly carcinogenic to humans (Group 2B).
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | - J Christopher Corton
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
8
|
Kudo N, Yamazaki T, Sakamoto T, Sunaga K, Tsuda T, Mitsumoto A, Kawashima Y. Effects of perfluorinated fatty acids with different carbon chain length on fatty acid profiles of hepatic lipids in mice. Biol Pharm Bull 2011; 34:856-64. [PMID: 21628884 DOI: 10.1248/bpb.34.856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alterations by perfluorinated fatty acids (PFCAs) with a chain length of 6-9 carbons in the fatty acid profile of hepatic lipids of mice were investigated. The characteristic changes caused by all the PFCAs examined were increases in the contents and proportions of oleic acid (18 : 1), palmitoleic acid (16 : 1) and 8,11,14-eicosatrienoic acid (20 : 3) in hepatic lipids. Hepatic contents of palmitic acid were also increased by the treatments with the PFCAs. These effects were almost dependent on the hepatic concentrations of PFCA molecules regardless of their carbon chain length. Perfluorooctanoic acid elevated the expressions of mRNA encoding acetyl-CoA carboxylase, fatty acid synthase, malic enzyme, stearoyl-CoA desaturase (SCD) (SCD1 and 2), chain elongase (ELOVL5), Δ6 desaturase (Fads2), 1-acylglycerophosphocholine acyltransferase (LPCAT) (LPCAT3). The four PFCAs examined induced microsomal SCD and LPCAT in hepatic concentration-dependent manners regardless of carbon chain length. One linear regression line was confirmed between LPCAT activity and hepatic concentration of PFCA at wide range of the concentration, whereas the induction of SCD was saturable at relatively low concentration of PFCAs. These results suggest (i) that PFCAs with a chain length of 6-9 carbons change the fatty acid profile of hepatic lipids by increasing contents and proportions of 16 : 1, 18 : 1 and 20 : 3, (ii) that these alterations in fatty acid profile are caused by up-regulation of SCD, de novo fatty acid synthesis, chain elongase and Δ6 desaturase and (iii) that the mechanism underlying SCD induction is, in part, mediated through peroxisome proliferator-activated receptor α.
Collapse
Affiliation(s)
- Naomi Kudo
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Hirose A, Yamazaki T, Sakamoto T, Sunaga K, Tsuda T, Mitsumoto A, Kudo N, Kawashima Y. Clofibric acid increases the formation of oleic acid in endoplasmic reticulum of the liver of rats. J Pharmacol Sci 2011; 116:362-72. [PMID: 21757842 DOI: 10.1254/jphs.11020fp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The effects of 2-(4-chlorophenoxy)-2-methylpropionic acid (clofibric acid) on the formation of oleic acid (18:1) from stearic acid (18:0) and utilization of the 18:1 formed for phosphatidylcholine (PC) formation in endoplasmic reticulum in the liver of rats were studied in vivo. [¹⁴C]18:0 was intravenously injected into control Wistar male rats and rats that had been fed on a diet containing 0.5% (w/w) clofibric acid for 7 days; and the distribution of radiolabeled fatty acids among subcellular organelles, microsomes, peroxisomes, and mitochondria, was estimated on the basis of correction utilizing the yields from homogenates of marker enzymes for these organelles. The radioactivity was mostly localized in microsomes and the radiolabeled fatty acids present in microsomes were significantly increased by the treatment of rats with clofibric acid. The formation of radiolabeled 18:1 in microsomes markedly increased and incorporations of the formed [¹⁴C]18:1 into PC and phosphatidylethanolamine in microsomes were augmented in response to clofibric acid. The [¹⁴C]18:1 incorporated into PC was mostly located at the C-2 position, but not the C-1 position, of PC, and the radioactivity in 18:1 at the C-2 position of PC was strikingly increased by clofibric acid. These results obtained from the in vivo experiments directly link the findings that clofibric acid treatment induces microsomal stearoyl-CoA desaturase and 1-acylglycerophosphocholine acyltransferase in the liver and the findings that the treatment with the drug elevated absolute mass and mass proportion of 18:1 at the C-2 position, but not the C-1 position, of PC in the liver together.
Collapse
Affiliation(s)
- Akihiko Hirose
- Division of Risk Assessment, National Institute of Health Sciences, Japan
| | | | | | | | | | | | | | | |
Collapse
|