1
|
Crabbe JC, Ozburn AR, Hitzemann RJ, Spence SE, Hack WR, Schlumbohm JP, Metten P. Tetracycline derivatives reduce binge alcohol consumption in High Drinking in the Dark mice. Brain Behav Immun Health 2020; 4:100061. [PMID: 34589846 PMCID: PMC8474687 DOI: 10.1016/j.bbih.2020.100061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/28/2023] Open
Abstract
Alcohol use disorders (AUDs) are prevalent, and are characterized by binge-like drinking, defined by patterns of focused drinking where dosages ingested in 2-4 h reach intoxicating blood alcohol levels (BALs). Current medications are few and compliance with the relatively rare prescribed usage is low. Hence, novel and more effective medications are needed. We developed a mouse model of genetic risk for binge drinking (HDID: High Drinking in the Dark mice) by selectively breeding for high BALs after binge drinking. A transcriptional analysis of HDID brain tissue with RNA-Seq implicated neuroinflammatory mechanisms, and, more specifically extracellular matrix genes, including those encoding matrix metalloproteinases (MMPs). Prior experiments from other groups have shown that the tetracycline derivatives doxycycline, minocycline, and tigecycline, reduce binge drinking in inbred C57BL/6J mice. We tested these three compounds in female and male HDID mice and found that all three reduced DID and BAL. They had drug-specific effects on intake of water or saccharin in the DID assay. Thus, our results show that the effectiveness of synthetic tetracycline derivatives as potential therapeutic agents for AUDs is not limited to the single C57BL/6J genotype previously targeted, but extends to a mouse model of a population at high risk for AUDs.
Collapse
Affiliation(s)
- John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Angela R. Ozburn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Robert J. Hitzemann
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Stephanie E. Spence
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Wyatt R. Hack
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Jason P. Schlumbohm
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| | - Pamela Metten
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University and Portland VA Health Care System (R&D 12), 3710 SW US Veterans Hospital Road, Portland, OR, 97239, USA
| |
Collapse
|
2
|
Targeting neuroinflammation with minocycline in heavy drinkers. Psychopharmacology (Berl) 2019; 236:3013-3021. [PMID: 30919006 PMCID: PMC6764907 DOI: 10.1007/s00213-019-05205-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/18/2019] [Indexed: 12/27/2022]
Abstract
RATIONALE Alcohol has both acute and chronic effects on neuroimmune signaling, including triggering pro-inflammatory cytokine release by microglia. Minocycline, a second-generation tetracycline antibiotic, inhibits microglial activation and reduces neuroinflammation in preclinical studies. In mice, minocycline also reduces ethanol intake, attenuates ethanol-induced conditioned place preference, and inhibits ethanol-induced microglial activation and pro-inflammatory cytokine release. OBJECTIVE Here, for the first time, we tested the effects of minocycline on subjective response to ethanol and acute ethanol-induced inflammation in humans. METHODS Forty-eight heavy drinkers participated in a double-blind, placebo-controlled trial in which they were randomized to receive placebo, 100 mg, or 200 mg of minocycline for 10 days. Each subject then underwent two experimental sessions in which they were given a fixed dose of intravenous ethanol using a "clamp" procedure (100 mg%) or placebo (normal saline) on days 8 and 10 of treatment. RESULTS Minocycline was well tolerated, but there was no effect of either dose of minocycline on subjective response to ethanol or ethanol-induced craving; minocycline effects on cognitive function seem to interact with age. Minocycline treatment did not alter serum cytokine levels at baseline or during ethanol-exposure, although certain baseline cytokine levels predict sedative response to ethanol. CONCLUSION These findings indicate that a short-term treatment with minocycline may not alter ethanol-related inflammation or subjective response to ethanol in humans. Further research is needed to identify pharmacological agents with robust effects on ethanol-induced inflammation to determine whether neuroimmune modulation represents a viable treatment strategy for alcohol use disorder.
Collapse
|
3
|
Melbourne JK, Thompson KR, Peng H, Nixon K. Its complicated: The relationship between alcohol and microglia in the search for novel pharmacotherapeutic targets for alcohol use disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:179-221. [PMID: 31601404 DOI: 10.1016/bs.pmbts.2019.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder (AUD) is a chronic relapsing disorder with wide-ranging health consequences. Alcohol targets the central nervous system producing neurodegeneration and subsequent cognitive and behavioral deficits, but the mechanisms behind these effects remain unclear. Recently, evidence has been mounting for the role of neuroimmune activation in the pathogenesis of AUDs, but our nascent state of knowledge about the interaction of alcohol with the neuroimmune system supports that the relationship is complicated. As the resident macrophage of the central nervous system, microglia are a central focus. Human and animal research on the interplay between microglia and alcohol in AUDs has proven to be complex, and though early research focused on a pro-inflammatory phenotype of microglia, the anti-inflammatory and homeostatic roles of microglia must be considered. How these new roles for microglia should be incorporated into our thinking about the neuroimmune system in AUDs is discussed in the context of developing novel pharmacotherapies for AUDs.
Collapse
Affiliation(s)
- Jennifer K Melbourne
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States
| | - K Ryan Thompson
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States
| | - Hui Peng
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY, United States
| | - Kimberly Nixon
- The University of Texas at Austin, College of Pharmacy, Division of Pharmacology & Toxicology, Austin, TX, United States.
| |
Collapse
|
4
|
Walker LC, Lawrence AJ. Investigational drug therapies in phase I and phase II clinical trials for alcohol use disorders. Expert Opin Investig Drugs 2018; 27:1-14. [PMID: 30019949 DOI: 10.1080/13543784.2018.1502269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alcohol use disorder (AUD) is a complex psychiatric condition characterized by craving, compulsive seeking, loss of control of alcohol consumption as well as the emergence of negative emotional states during withdrawal. Despite the large socioeconomic burden of AUD, therapeutic treatment options lag behind. AREAS COVERED This review covers pharmacotherapies currently in phase I/II clinical trials for the treatment of AUDs listed on clinicaltrials.gov. We discuss drug therapies that modulate monoamine, GABA/Glutamate, neuropeptide and neuroimmune systems. We examine in depth preclinical and clinical evidence of a select range of these compounds and consider their utility in treating AUDs. EXPERT OPINION Current therapeutic options to treat AUD are inadequate at a population level. Currently there are 30 different compounds and one compound combination in phase I/II clinical trials for AUD. These compounds target various aspects of neurotransmitter signaling, neuroimmune modulation, and alcohol metabolism. Almost 75% of these compounds under trial are Food and Drug Administration (FDA) approved for other indications, which may save time and costs in treatment development. Further, development of therapeutics focused on genetic biomarkers and behavioral screening may improve how treatment decisions are made in the future on a case-by-case basis.
Collapse
Affiliation(s)
- Leigh C Walker
- a Florey Department of Neuroscience and Mental Health , University of Melbourne , Parkville , VIC , Australia
| | - Andrew J Lawrence
- a Florey Department of Neuroscience and Mental Health , University of Melbourne , Parkville , VIC , Australia
| |
Collapse
|
5
|
Shishkina GT, Lanshakov DA, Bannova AV, Kalinina TS, Agarina NP, Dygalo NN. Doxycycline Used for Control of Transgene Expression has its Own Effects on Behaviors and Bcl-xL in the Rat Hippocampus. Cell Mol Neurobiol 2018; 38:281-288. [PMID: 28861774 PMCID: PMC11482017 DOI: 10.1007/s10571-017-0545-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/29/2017] [Indexed: 01/27/2023]
Abstract
Doxycycline (Dox)-inducible transgenic approach is used to examine the neural mechanisms of anxiety and depression; however, its own effects on related behaviors are not clear. To address this, in the present study, we tested the anxiety- and depression-like behaviors in rats treated with Dox in drinking water (2 mg/ml) in the elevated plus-maze (EPM; on day 5) and forced swim (FST; on day 8) tests, respectively. In addition, the levels of mRNAs and proteins of brain-derived neurotrophic factor (BDNF) and anti-apoptotic protein Bcl-xL in the hippocampus (HIPP) and frontal cortex (FC) were also analyzed. Consumption of Dox for 4 days induced an anxiogenic-like phenotype that was manifested by the decreased percentages of open arm entries and time spent on the open arms of the EPM. After Dox for 7 days, animals demonstrated more active behavior in the FST than control rats as evidenced by the increase in climbing time. When assessed after the FST, expression of Bcl-xL was increased in the hippocampus of Dox-treated animals. Furthermore, hippocampal Bcl-xL content correlated positively with the duration of climbing in the test. This study is the first to find that Dox in treatment regime used to control transgene expression can affect anxiety- and depression-like behaviors in rats. Dox-induced increase in Bcl-xL expression in the hippocampus may be involved in the moderate activation of FST behavior.
Collapse
Affiliation(s)
- G T Shishkina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia, 630090.
| | - D A Lanshakov
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia, 630090
| | - A V Bannova
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia, 630090
| | - T S Kalinina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia, 630090
| | - N P Agarina
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia, 630090
| | - N N Dygalo
- Functional Neurogenomics Laboratory, Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia, 630090
| |
Collapse
|
6
|
Lainiola M, Linden AM. Alcohol intake in two different mouse drinking models after recovery from the lipopolysaccharide-induced sickness reaction. Alcohol 2017; 65:1-10. [PMID: 29084623 DOI: 10.1016/j.alcohol.2017.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/19/2017] [Accepted: 06/12/2017] [Indexed: 12/19/2022]
Abstract
Neuroinflammation may play an important role in the development of alcohol addiction. Recent preclinical reports suggest that enhanced innate immune system signaling increases consumption of alcohol. Our aim was to study whether consequences of lipopolysaccharide (LPS)-induced sickness reaction increase long-term alcohol intake. Adult male C57BL/6J mice, housed in individually ventilated cages, were injected with LPS intraperitoneally (i.p.) and allowed to recover from an acute sickness reaction for 1 week before analysis of their alcohol intake in two different drinking models. Effects of LPS challenge were tested in a continuous two-bottle free choice test with increasing concentrations of alcohol and in a drinking in the dark (DID) binge model. In addition, the effect of repeatedly administered LPS during abstinence periods between binge drinking was analyzed in the DID model. In addition, the DID model was used to study the effects of the microglia inhibitor minocycline (50 mg/kg/day, 4 days) and purinergic P2X7 receptor antagonist Brilliant Blue G (75 mg/kg/day, 7 days) on alcohol intake. In contrast to previous findings, pretreatment with a 1-mg/kg dose of LPS did not significantly increase ethanol consumption in the continuous two-bottle choice test. As a novel finding, we report that increasing the LPS dose to 1.5 mg/kg reduced consumption of 18 and 21% (v/v) ethanol. In the DID model, pretreatment with LPS (0.2-1.5 mg/kg) did not significantly alter 15% or 20% ethanol consumption. Neither did repeated LPS injections affect binge alcohol drinking. Minocycline reduced alcohol, but also water, intake regardless of LPS pretreatment. No data on effects of P2X7 antagonists on alcohol consumption have been previously published; therefore, we report here that subchronic Brilliant Blue G had no effect on alcohol intake in the DID model. As a conclusion, further studies are needed to validate this LPS model of the interaction between immune system activation and alcohol consumption.
Collapse
|
7
|
Oliveros A, Choi DS. Repurposing Tigecycline for the Treatment of Alcohol Use Disorder. Alcohol Clin Exp Res 2017; 41:497-500. [PMID: 28133753 DOI: 10.1111/acer.13312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/09/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Alfredo Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics , Mayo Clinic College of Medicine, Rochester, Minnesota.,Department of Psychiatry and Psychology , Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
8
|
Syapin PJ, Martinez JM, Curtis DC, Marquardt PC, Allison CL, Groot JA, Baby C, Al-Hasan YM, Segura I, Scheible MJ, Nicholson KT, Redondo JL, Trotter DRM, Edwards DS, Bergeson SE. Effective Reduction in High Ethanol Drinking by Semisynthetic Tetracycline Derivatives. Alcohol Clin Exp Res 2016; 40:2482-2490. [PMID: 27859416 DOI: 10.1111/acer.13253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND New pharmacotherapies to treat alcohol use disorders (AUD) are needed. Given the complex nature of AUD, there likely exist multiple novel drug targets. We, and others, have shown that the tetracycline drugs, minocycline and doxycycline, reduced ethanol (EtOH) drinking in mice. To test the hypothesis that suppression of high EtOH consumption is a general property of tetracyclines, we screened several derivatives for antidrinking activity using the Drinking-In-the-Dark (DID) paradigm. Active drugs were studied further using the dose-response relationship. METHODS Adult female and male C57BL/6J mice were singly housed and the DID paradigm was performed using 20% EtOH over a 4-day period. Mice were administered a tetracycline or its vehicle 20 hours prior to drinking. Water and EtOH consumption was measured daily. Body weight was measured at the start of drug injections and after the final day of the experiment. Blood was collected for EtOH content measurement immediately following the final bout of drinking. RESULTS Seven tetracyclines were tested at a 50 mg/kg dose. Only minocycline and tigecycline significantly reduced EtOH drinking, and doxycycline showed a strong effect size trend toward reduced drinking. Subsequent studies with these 3 drugs revealed a dose-dependent decrease in EtOH consumption for both female and male mice, with sex differences in efficacy. Minocycline and doxycycline reduced water intake at higher doses, although to a lesser degree than their effects on EtOH drinking. Tigecycline did not negatively affect water intake. The rank order of potency for reduction in EtOH consumption was minocycline > doxycycline > tigecycline, indicating efficacy was not strictly related to their partition coefficients or distribution constants. CONCLUSIONS Due to its effectiveness in reducing high EtOH consumption coupled without an effect on water intake, tigecycline was found to be the most promising lead tetracycline compound for further study toward the development of a new pharmacotherapy for the treatment of AUD.
Collapse
Affiliation(s)
- Peter J Syapin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joseph M Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David C Curtis
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Patrick C Marquardt
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Clayton L Allison
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jessica A Groot
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Carol Baby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Yazan M Al-Hasan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Ismael Segura
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Matthew J Scheible
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas.,Department of Pharmacology, University of Houston, Houston, Texas
| | - Katy T Nicholson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jose Luis Redondo
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David R M Trotter
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David S Edwards
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
9
|
Bergeson SE, Nipper MA, Jensen J, Helms ML, Finn DA. Tigecycline Reduces Ethanol Intake in Dependent and Nondependent Male and Female C57BL/6J Mice. Alcohol Clin Exp Res 2016; 40:2491-2498. [PMID: 27859429 DOI: 10.1111/acer.13251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND The chronic intermittent ethanol (CIE) paradigm is valuable for screening compounds for efficacy to reduce drinking traits related to alcohol use disorder (AUD), as it measures alcohol consumption and preference under physical dependence conditions. Air control-treated animals allow simultaneous testing of similarly treated, nondependent animals. As a consequence, we used CIE to test the hypothesis that tigecycline, a semisynthetic tetracycline similar to minocycline and doxycycline, would reduce alcohol consumption regardless of dependence status. METHODS Adult C57BL/6J female and male mice were tested for tigecycline efficacy to reduce ethanol (EtOH) consumption using a standard CIE paradigm. The ability of tigecycline to decrease 2-bottle choice of 15% EtOH (15E) versus water intake in dependent (CIE vapor) and nondependent (air-treated) male and female mice was tested after 4 cycles of CIE vapor or air exposure using a within-subjects design and a dose-response. Drug doses of 0, 40, 60, 80, and 100 mg/kg in saline were administered intraperitoneally (0.01 ml/g body weight) and in random order, with a 1-hour pretreatment time. Baseline 15E intake was re-established prior to administration of subsequent injections, with a maximum of 2 drug injections tested per week. RESULTS Tigecycline was found to effectively reduce high alcohol consumption in both dependent and nondependent female and male mice. CONCLUSIONS Our data suggest that tigecycline may be a promising drug with novel pharmacotherapeutic characteristics for the treatment of mild-to-severe AUD in both sexes.
Collapse
Affiliation(s)
- Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Michelle A Nipper
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Jeremiah Jensen
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Melinda L Helms
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon.,Department of Research, Portland VA Health Care System, Portland, Oregon
| |
Collapse
|
10
|
Bergeson SE, Blanton H, Martinez JM, Curtis DC, Sherfey C, Seegmiller B, Marquardt PC, Groot JA, Allison CL, Bezboruah C, Guindon J. Binge Ethanol Consumption Increases Inflammatory Pain Responses and Mechanical and Cold Sensitivity: Tigecycline Treatment Efficacy Shows Sex Differences. Alcohol Clin Exp Res 2016; 40:2506-2515. [PMID: 27862022 PMCID: PMC5133157 DOI: 10.1111/acer.13252] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/21/2016] [Indexed: 11/29/2022]
Abstract
Background Physicians have long reported that patients with chronic pain show higher tendencies for alcohol use disorder (AUD), and AUD patients appear to have higher pain sensitivities. The goal of this study was to test 2 hypotheses: (i) binge alcohol consumption increases inflammatory pain and mechanical and cold sensitivities; and (ii) tigecycline is an effective treatment for alcohol‐mediated‐increased pain behaviors and sensitivities. Both female and male mice were used to test the additional hypothesis that important sex differences in the ethanol (EtOH)‐related traits would be seen. Methods “Drinking in the Dark” (DID) alcohol consuming and nondrinking control, female and male, adult C57BL/6J mice were evaluated for inflammatory pain behaviors and for the presence of mechanical and cold sensitivities. Inflammatory pain was produced by intraplantar injection of formalin (10 μl, 2.5% in saline). For cold sensation, a 20 μl acetone drop was used. Mechanical withdrawal threshold was measured by an electronic von Frey anesthesiometer. Efficacy of tigecycline (80 mg/kg i.p.) to reduce DID‐related pain responses and sensitivity was tested. Results DID EtOH consumption increased inflammatory pain behavior, while it also produced sustained mechanical and cold sensitivities in both females and males. Tigecycline produced antinociceptive effects in males; a pro‐nociceptive effect was seen in females in the formalin test. Likewise, the drug reduced both mechanical and cold sensitivities in males, but females showed an increase in sensitivity in both tests. Conclusions Our results demonstrated that binge drinking increases pain, touch, and thermal sensations in both sexes. In addition, we have identified sex‐specific effects of tigecycline on inflammatory pain, as well as mechanical and cold sensitivities. The development of tigecycline as an AUD pharmacotherapy may need consideration of its pro‐nociceptive action in females. Further studies are needed to investigate the mechanism underlying the sex‐specific differences in nociception.
Collapse
Affiliation(s)
- Susan E Bergeson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Henry Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Joseph M Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - David C Curtis
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Caitlyn Sherfey
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Brandon Seegmiller
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Patrick C Marquardt
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Jessica A Groot
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Clayton L Allison
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Christian Bezboruah
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
11
|
Chi-Castañeda D, Ortega A. Clock Genes in Glia Cells: A Rhythmic History. ASN Neuro 2016; 8:8/5/1759091416670766. [PMID: 27666286 PMCID: PMC5037500 DOI: 10.1177/1759091416670766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/22/2016] [Indexed: 11/17/2022] Open
Abstract
Circadian rhythms are periodic patterns in biological processes that allow the organisms to anticipate changes in the environment. These rhythms are driven by the suprachiasmatic nucleus (SCN), the master circadian clock in vertebrates. At a molecular level, circadian rhythms are regulated by the so-called clock genes, which oscillate in a periodic manner. The protein products of clock genes are transcription factors that control their own and other genes’ transcription, collectively known as “clock-controlled genes.” Several brain regions other than the SCN express circadian rhythms of clock genes, including the amygdala, the olfactory bulb, the retina, and the cerebellum. Glia cells in these structures are expected to participate in rhythmicity. However, only certain types of glia cells may be called “glial clocks,” since they express PER-based circadian oscillators, which depend of the SCN for their synchronization. This contribution summarizes the current information about clock genes in glia cells, their plausible role as oscillators and their medical implications.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México Soluciones para un México Verde, S.A de C.V., Santa Fé Ciudad de México, México
| | - Arturo Ortega
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
12
|
Abstract
Brain glial cells, in particular astrocytes and microglia, secrete signaling molecules that regulate glia-glia or glia-neuron communication and synaptic activity. While much is known about roles of glial cells in nervous system development, we are only beginning to understand the physiological functions of such cells in the adult brain. Studies in vertebrate and invertebrate models, in particular mice and Drosophila, have revealed roles of glia-neuron communication in the modulation of complex behavior. This chapter emphasizes recent evidence from studies of rodents and Drosophila that highlight the importance of glial cells and similarities or differences in the neural circuits regulating circadian rhythms and sleep in the two models. The chapter discusses cellular, molecular, and genetic approaches that have been useful in these models for understanding how glia-neuron communication contributes to the regulation of rhythmic behavior.
Collapse
Affiliation(s)
- F Rob Jackson
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| | - Fanny S Ng
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Sukanya Sengupta
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Samantha You
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Yanmei Huang
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
13
|
Olney JJ, Navarro M, Thiele TE. Targeting central melanocortin receptors: a promising novel approach for treating alcohol abuse disorders. Front Neurosci 2014; 8:128. [PMID: 24917782 PMCID: PMC4042890 DOI: 10.3389/fnins.2014.00128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/08/2014] [Indexed: 12/30/2022] Open
Abstract
The melanocortin (MC) peptides are produced centrally by propiomelanocortin (POMC) neurons within the arcuate nucleus of the hypothalamus and act through five seven-transmembrane G-protein coupled melanocortin receptor (MCR) subtypes. The MC3R and MC4R subtypes, the most abundant central MCRs, are widely expressed in brain regions known to modulate neurobiological responses to ethanol, including regions of the hypothalamus and extended amygdala. Agouti-related protein (AgRP), also produced in the arcuate nucleus, is secreted in terminals expressing MCRs and functions as an endogenous MCR antagonist. This review highlights recent genetic and pharmacological findings that have implicated roles for the MC and AgRP systems in modulating ethanol consumption. Ethanol consumption is associated with significant alterations in the expression levels of various MC peptides/protein, which suggests that ethanol-induced perturbations of MC/AgRP signaling may modulate excessive ethanol intake. Consistently, MCR agonists decrease, and AgRP increases, ethanol consumption in mice. MCR agonists fail to blunt ethanol intake in mutant mice lacking the MC4R, suggesting that the protective effects of MCR agonists are modulated by the MC4R. Interestingly, recent evidence reveals that MCR agonists are more effective at blunting binge-like ethanol intake in mutant mice lacking the MC3R, suggesting that the MC3R has opposing effects on the MC4R. Finally, mutant mice lacking AgRP exhibit blunted voluntary and binge-like ethanol drinking, consistent with pharmacological studies. Collectively, these preclinical observations provide compelling evidence that compounds that target the MC system may provide therapeutic value for treating alcohol abuse disorders and that the utilization of currently available MC-targeting compounds- such as those being used to treat eating disorders- may be used as effective treatments to this end.
Collapse
Affiliation(s)
- Jeffrey J Olney
- Department of Psychology, University of North Carolina Chapel Hill, NC, USA
| | - Montserrat Navarro
- Department of Psychology, University of North Carolina Chapel Hill, NC, USA
| | - Todd E Thiele
- Department of Psychology, University of North Carolina Chapel Hill, NC, USA ; Bowles Center for Alcohol Studies, University of North Carolina Chapel Hill, NC, USA
| |
Collapse
|
14
|
Majewski M. A current opinion on the safety and efficacy of doxycycline including parenteral administration – A review. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.poamed.2013.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Drew PD, Kane CJM. Fetal alcohol spectrum disorders and neuroimmune changes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:41-80. [PMID: 25175861 DOI: 10.1016/b978-0-12-801284-0.00003-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The behavioral consequences of fetal alcohol spectrum disorders (FASD) are serious and persist throughout life. The causative mechanisms underlying FASD are poorly understood. However, much has been learned about FASD from human structural and functional studies as well as from animal models, which have provided a greater understanding of the mechanisms underlying FASD. Using animal models of FASD, it has been recently discovered that ethanol induces neuroimmune activation in the developing brain. The resulting microglial activation, production of proinflammatory molecules, and alteration in expression of developmental genes are postulated to alter neuron survival and function and lead to long-term neuropathological and cognitive defects. It has also been discovered that microglial loss occurs, reducing microglia's ability to protect neurons and contribute to neuronal development. This is important, because emerging evidence demonstrates that microglial depletion during brain development leads to long-term neuropathological and cognitive defects. Interestingly, the behavioral consequences of microglial depletion and neuroimmune activation in the fetal brain are particularly relevant to FASD. This chapter reviews the neuropathological and behavioral abnormalities of FASD and delineates correlates in animal models. This serves as a foundation to discuss the role of the neuroimmune system in normal brain development, the consequences of microglial depletion and neuroinflammation, the evidence of ethanol induction of neuroinflammatory processes in animal models of FASD, and the development of anti-inflammatory therapies as a new strategy for prevention or treatment of FASD. Together, this knowledge provides a framework for discussion and further investigation of the role of neuroimmune processes in FASD.
Collapse
Affiliation(s)
- Paul D Drew
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Cynthia J M Kane
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
16
|
Abstract
Acute alcohol intoxication causes cellular changes in the brain that last for hours, while chronic alcohol use induces widespread neuroadaptations in the nervous system that can last a lifetime. Chronic alcohol use and the progression into dependence involve the remodeling of synapses caused by changes in gene expression produced by alcohol. The progression of alcohol use, abuse, and dependence can be divided into stages, which include intoxication, withdrawal, and craving. Each stage is associated with specific changes in gene expression, cellular function, brain circuits, and ultimately behavior. What are the molecular mechanisms underlying the transition from recreational use (acute) to dependence (chronic)? What cellular adaptations result in drug memory retention, leading to the persistence of addictive behaviors, even after prolonged drug abstinence? Research into the neurobiology of alcoholism aims to answer these questions. This chapter will describe the molecular adaptations caused by alcohol use and dependence, and will outline key neurochemical participants in alcoholism at the molecular level, which are also potential targets for therapy.
Collapse
Affiliation(s)
- Dana Most
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA
| | - Laura Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX, USA.
| |
Collapse
|
17
|
Ray LA, Roche DJO, Heinzerling K, Shoptaw S. Opportunities for the development of neuroimmune therapies in addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:381-401. [PMID: 25175870 DOI: 10.1016/b978-0-12-801284-0.00012-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies have implicated neuroinflammatory processes in the pathophysiology of various psychiatric conditions, including addictive disorders. Neuroimmune signaling represents an important and relatively poorly understood biological process in drug addiction. The objective of this review is to update the field on recent developments in neuroimmune therapies for addiction. First, we review studies of neuroinflammation in relation to alcohol and methamphetamine dependence followed by a section on neuroinflammation and accompanying neurocognitive dysfunction in HIV infection and concomitant substance abuse. Second, we provide a review of pharmacotherapies with neuroimmune properties and their potential development for the treatment of addictions. Pharmacotherapies covered in this review include ibudilast, minocycline, doxycycline, topiramate, indomethacin, rolipram, anakinra (IL-1Ra), peroxisome proliferator-activated receptor agonists, naltrexone, and naloxone. Lastly, summary and future directions are provided with recommendations for how to efficiently translate preclinical findings into clinical studies that can ultimately lead to novel and more effective pharmacotherapies for addiction.
Collapse
Affiliation(s)
- Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA.
| | - Daniel J O Roche
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
| | - Keith Heinzerling
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Steve Shoptaw
- Department of Family Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
18
|
Sultan S, Gebara E, Toni N. Doxycycline increases neurogenesis and reduces microglia in the adult hippocampus. Front Neurosci 2013; 7:131. [PMID: 23898238 PMCID: PMC3722480 DOI: 10.3389/fnins.2013.00131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/08/2013] [Indexed: 11/13/2022] Open
Abstract
Adult hippocampal neurogenesis results in the continuous formation of new neurons and is a process of brain plasticity involved in learning and memory. Although inducible-reversible transgenic mouse models are increasingly being used to investigate adult neurogenesis, transgene control requires the administration of an activator, doxycycline (Dox), with unknown effects on adult neurogenesis. Here, we tested the effect of Dox administration on adult neurogenesis in vivo. We found that 4 weeks of Dox treatment at doses commonly used for gene expression control, resulted in increased neurogenesis. Furthermore, the dendrites of new neurons displayed increased spine density. Concomitantly, Iba1-expressing microglia was reduced by Dox treatment. These results indicate that Dox treatment may interfere with parameters of relevance for the use of inducible transgenic mice in studies of adult neurogenesis or brain inflammation.
Collapse
Affiliation(s)
- Sebastien Sultan
- Department of Fundamental Neurosciences, University of Lausanne Lausanne, Switzerland
| | | | | |
Collapse
|
19
|
Neuroimmune signaling: a key component of alcohol abuse. Curr Opin Neurobiol 2013; 23:513-20. [PMID: 23434064 DOI: 10.1016/j.conb.2013.01.024] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/16/2013] [Accepted: 01/24/2013] [Indexed: 12/13/2022]
Abstract
Molecular and behavioral studies corroborate a pivotal role for the innate immune system in mediating the acute and chronic effects of alcohol and support a neuroimmune hypothesis of alcohol addiction. Changes in expression of neuroimmune genes and microglial transcripts occur in postmortem brain from alcoholics and animals exposed to alcohol, and null mutant animals lacking certain innate immune genes show decreased alcohol-mediated responses. Many of the differentially expressed genes are part of the toll like receptor (TLR) signaling pathway and culminate in an increased expression of pro-inflammatory immune genes. Compounds known to inhibit inflammation, microglial activation, and neuroimmune gene expression have shown promising results in reducing alcohol-mediated behaviors in animal models, indicating that neuroimmune signaling pathways offer unexplored targets in the treatment of alcohol abuse.
Collapse
|