1
|
Mushtaq S, Baggiano A, Cannata F, Del Torto A, Fazzari F, Fusini L, Junod D, Maragna R, Tassetti L, Volpe A, Carrabba N, Conte E, Guglielmo M, La Mura L, Pergola V, Pedrinelli R, Perrone Filardi P, Guaricci AI, Pontone G. How to perform and evaluate a myocardial perfusion imaging by computed tomography. EUROPEAN HEART JOURNAL. IMAGING METHODS AND PRACTICE 2025; 3:qyaf001. [PMID: 39840236 PMCID: PMC11745902 DOI: 10.1093/ehjimp/qyaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/25/2024] [Indexed: 01/23/2025]
Abstract
Stress computed tomography perfusion (CTP) delivers a comprehensive evaluation of both the anatomical and functional aspects in a single examination. It stands out as the only non-invasive technique capable of quantifying coronary stenosis and assessing its functional impact, offering a consolidated diagnostic and management approach for patients with confirmed or suspected coronary artery disease (CAD). This very practical review ('How to..' approach) provides guidance on conducting and interpreting static and dynamic CTP, along with an analysis of the strengths and limitations of these methodologies.
Collapse
Affiliation(s)
- Saima Mushtaq
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milan 20138, Italy
| | - Andrea Baggiano
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milan 20138, Italy
| | - Francesco Cannata
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milan 20138, Italy
| | - Alberico Del Torto
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milan 20138, Italy
| | - Fabio Fazzari
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milan 20138, Italy
| | - Laura Fusini
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milan 20138, Italy
| | - Daniele Junod
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milan 20138, Italy
| | - Riccardo Maragna
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milan 20138, Italy
| | - Luigi Tassetti
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milan 20138, Italy
| | - Alessandra Volpe
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milan 20138, Italy
| | - Nazario Carrabba
- Department of Cardiothoracovascular Medicine, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Edoardo Conte
- Department of Clinical Cardiology and Cardiovascular Imaging, Galeazzi-Sant'Ambrogio Hospital IRCCS, Milan, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lucia La Mura
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Naples, Italy
| | - Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Pedrinelli
- Cardiac, Thoracic and Vascular Department, University of Pisa, Pisa, Italy
| | | | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Gianluca Pontone
- Perioperative Cardiology and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Via C. Parea 4, Milan 20138, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Allphin AJ, Nadkarni R, Clark DP, Gil CJ, Tomov ML, Serpooshan V, Badea CT. Turn-table micro-CT scanner for dynamic perfusion imaging in mice: design, implementation, and evaluation. Phys Med Biol 2024; 69:10.1088/1361-6560/ad6edd. [PMID: 39137802 PMCID: PMC11444210 DOI: 10.1088/1361-6560/ad6edd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective.This study introduces a novel desktop micro-CT scanner designed for dynamic perfusion imaging in mice, aimed at enhancing preclinical imaging capabilities with high resolution and low radiation doses.Approach.The micro-CT system features a custom-built rotating table capable of both circular and helical scans, enabled by a small-bore slip ring for continuous rotation. Images were reconstructed with a temporal resolution of 3.125 s and an isotropic voxel size of 65µm, with potential for higher resolution scanning. The system's static performance was validated using standard quality assurance phantoms. Dynamic performance was assessed with a custom 3D-bioprinted tissue-mimetic phantom simulating single-compartment vascular flow. Flow measurements ranged from 1.51to 9 ml min-1, with perfusion metrics such as time-to-peak, mean transit time, and blood flow index calculated.In vivoexperiments involved mice with different genetic risk factors for Alzheimer's and cardiovascular diseases to showcase the system's capabilities for perfusion imaging.Main Results.The static performance validation confirmed that the system meets standard quality metrics, such as spatial resolution and uniformity. The dynamic evaluation with the 3D-bioprinted phantom demonstrated linearity in hemodynamic flow measurements and effective quantification of perfusion metrics.In vivoexperiments highlighted the system's potential to capture detailed perfusion maps of the brain, lungs, and kidneys. The observed differences in perfusion characteristics between genotypic mice illustrated the system's capability to detect physiological variations, though the small sample size precludes definitive conclusions.Significance.The turn-table micro-CT system represents a significant advancement in preclinical imaging, providing high-resolution, low-dose dynamic imaging for a range of biological and medical research applications. Future work will focus on improving temporal resolution, expanding spectral capabilities, and integrating deep learning techniques for enhanced image reconstruction and analysis.
Collapse
Affiliation(s)
- A. J. Allphin
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - R. Nadkarni
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - D. P. Clark
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - C. J. Gil
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - M. L. Tomov
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - V. Serpooshan
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA, USA
| | - C. T. Badea
- Quantitative Imaging and Analysis Lab, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Andersen MB, Drljevic-Nielsen A, Ehlers JH, Thorup KS, Baandrup AO, Palne M, Rasmussen F. DCE-CT parameters as new functional imaging biomarkers at baseline and during immune checkpoint inhibitor therapy in patients with lung cancer - a feasibility study. Cancer Imaging 2024; 24:105. [PMID: 39135095 PMCID: PMC11320886 DOI: 10.1186/s40644-024-00745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND With the development of immune checkpoint inhibitors for the treatment of non-small cell lung cancer, the need for new functional imaging techniques and early response assessments has increased to account for new response patterns and the high cost of treatment. The present study was designed to assess the prognostic impact of dynamic contrast-enhanced computed tomography (DCE-CT) on survival outcomes in non-small cell lung cancer patients treated with immune checkpoint inhibitors. METHODS Thirty-three patients with inoperable non-small-cell lung cancer treated with immune checkpoint inhibitors were prospectively enrolled for DCE-CT as part of their follow-up. A single target lesion at baseline and subsequent follow-up examinations were enclosed in the DCE-CT. Blood volume deconvolution (BVdecon), blood flow deconvolution (BFdecon), blood flow maximum slope (BFMax slope) and permeability were assessed using overall survival (OS) and progression-free survival (PFS) as endpoints in Kaplan Meier and Cox regression analyses. RESULTS High baseline Blood Volume (BVdecon) (> 12.97 ml × 100 g-1) was associated with a favorable OS (26.7 vs 7.9 months; p = 0.050) and PFS (14.6 vs 2.5 months; p = 0.050). At early follow-up on day seven a higher relative increase in BFdecon (> 24.50% for OS and > 12.04% for PFS) was associated with an unfavorable OS (8.7 months vs 23.1 months; p < 0.025) and PFS (2.5 vs 13.7 months; p < 0.018). The relative change in BFdecon (categorical) on day seven was a predictor of OS (HR 0.26, CI95: 0.06 to 0.93 p = 0.039) and PFS (HR 0.27, CI95: 0.09 to 0.85 p = 0.026). CONCLUSION DCE-CT-identified parameters may serve as potential prognostic biomarkers at baseline and during early treatment in patients with NSCLC treated with immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Michael Brun Andersen
- Department of Radiology, Copenhagen University Hospital, Gentofte, Denmark.
- Department of Radiology, Zealand University Hospital, Køge, Denmark.
- Department of Radiology, Aarhus University Hospital, Skejby, Denmark.
- Radiology Department, Copenhagen University Hospital, Gentofte Hospitalsvej 1, 2900, Hellerup, Denmark.
- Department of clinical medicine, Copenhagen University, Copenhagen, Denmark.
| | | | | | | | | | - Majbritt Palne
- Department of Radiology, Zealand University Hospital, Køge, Denmark
| | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital, Skejby, Denmark
| |
Collapse
|
4
|
Talakić E, Kaufmann-Bühler AK, Igrec J, Adelsmayr G, Janisch M, Döller C, Geyer E, Lackner K, Fuchsjäger M, Schöllnast H. Perfusion Computed Tomography in Rectal Carcinoma: Influence of Optimization of the Patlak Range on Calculation of Equivalent Blood Volume and Flow Extraction. J Comput Assist Tomogr 2023; 47:850-855. [PMID: 37948358 DOI: 10.1097/rct.0000000000001506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
PURPOSE The aim of the study is to assess the influence of manual adjustment of the Patlak range in computed tomography (CT) perfusion analysis of rectal carcinoma compared with default range of the perfusion software. METHODS This study was approved by the institutional review board and informed consent was obtained. Twenty-one patients (12 male, 9 female; mean age ± SD, 59 ± 11 years) with rectal cancer were included and underwent perfusion CT before preoperative chemoradiotherapy. Equivalent blood volume (BV) and flow-extraction (FE) were calculated using the Patlak plot model. Two perfusion sets were calculated per patient, a perfusion set using the default setting as provided by the software (dBV, dFE) and an optimized perfusion set after manual adaption of the Patlak range (aBV, aFE), which was limited to the intravascular space clearance of contrast to the extravascular space. Perfusion values calculated with both methods were compared for significance in differences using the Wilcoxon test. A P value of 0.05 or less was defined as statistically significant. RESULTS Adjustment of the Patlak range statistically significantly influenced BV and FE calculation. Median dBV was 23.2 mL/100 mL (interquartile range [IQR], 12.1 mL/100 mL), whereas median aBV was 20.3 mL/100 mL (IQR, 10.9 mL/100 mL). The difference in BV was statistically significant ( P = 0.021). Median dFE was 8.3 mL/min/100 mL (IQR, 4.7 mL/min/100 mL), whereas median aFE was 15.4 mL/min/100 mL (IQR, 5.8 mL/min/100 mL). The difference in FE was statistically significant ( P < 0.001). CONCLUSIONS Our findings indicate that in perfusion CT of rectal carcinoma, adjustment of the Patlak range may significantly influence BV and FE compared with default setting of the software. This may contribute to standardization in the use of this technique for functional imaging of rectal cancer.
Collapse
Affiliation(s)
- Emina Talakić
- From the Division of General Radiology, Department of Radiology, Medical University of Graz
| | | | - Jasminka Igrec
- From the Division of General Radiology, Department of Radiology, Medical University of Graz
| | - Gabriel Adelsmayr
- From the Division of General Radiology, Department of Radiology, Medical University of Graz
| | - Michael Janisch
- From the Division of General Radiology, Department of Radiology, Medical University of Graz
| | - Carmen Döller
- Department of Therapeutic Radiology and Oncology, Medical University of Graz
| | - Edith Geyer
- Department of Therapeutic Radiology and Oncology, Medical University of Graz
| | - Karoline Lackner
- Diagnostic and Research Institute of Pathology, Medical University of Graz
| | - Michael Fuchsjäger
- From the Division of General Radiology, Department of Radiology, Medical University of Graz
| | | |
Collapse
|
5
|
Dual-energy computed tomography as a lower radiation dose alternative to perfusion computed tomography in tumor viability assessment. Sci Rep 2023; 13:120. [PMID: 36599882 DOI: 10.1038/s41598-022-27221-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
To present the utility of dual-energy computed tomography (DECT) in the assessment of angiogenesis of focal lesions as an example of a solitary pulmonary nodule (SPN). This prospective study comprised 28 patients with SPN who underwent DECT and perfusion computed tomography (CTP), according to a proprietary protocol. Two radiologists independently analyzed four perfusion parameters, namely blood flow (BF), blood volume (BV), the time to maximum of the tissue residue function (Tmax), permeability surface area product (PS) from CTP, in addition to the iodine concentration (IC) and normalized iodine concentration (NIC) of the SPN from DECT. We used the Pearson R correlation and interclass correlation coefficients (ICCs). Statistical significance was assumed at p < 0.05. The mean tumor size was 23.5 ± 6.5 mm. We observed good correlations between IC and BF (r = 0.78, p < 0.000) and NIC and BF (r = 0.71, p < 0.000) as well as between IC and BV (r = 0.73, p < 0.000) and NIC and BV (r = 0.73, p < 0.000) and poor correlation between IC and PS (r = 0.38, p = 0.044).There was no correlation between NIC and PS (r = 0.35, p = 0.064), IC content and Tmax (r = - 0.28, p = 0.147) and NIC and Tmax (r = - 0.21, p = 0.266). Inter-reader agreement on quantitative parameters at CTP (ICCPS = 0.97, ICCTmax = 0.96, ICCBV = 0.98, and ICCBF = 0.99) and DECT (ICCIC = 0.98) were excellent. The radiation dose was significantly lower in DECT than that in CTP (4.84 mSv vs. 9.07 mSv, respectively). DECT is useful for the functional assessment of oncological lesions with less exposure to radiation compared to perfusion computed tomography.
Collapse
|
6
|
Zeng D, Zeng C, Zeng Z, Li S, Deng Z, Chen S, Bian Z, Ma J. Basis and current state of computed tomography perfusion imaging: a review. Phys Med Biol 2022; 67. [PMID: 35926503 DOI: 10.1088/1361-6560/ac8717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
Abstract
Computed tomography perfusion (CTP) is a functional imaging that allows for providing capillary-level hemodynamics information of the desired tissue in clinics. In this paper, we aim to offer insight into CTP imaging which covers the basics and current state of CTP imaging, then summarize the technical applications in the CTP imaging as well as the future technological potential. At first, we focus on the fundamentals of CTP imaging including systematically summarized CTP image acquisition and hemodynamic parameter map estimation techniques. A short assessment is presented to outline the clinical applications with CTP imaging, and then a review of radiation dose effect of the CTP imaging on the different applications is presented. We present a categorized methodology review on known and potential solvable challenges of radiation dose reduction in CTP imaging. To evaluate the quality of CTP images, we list various standardized performance metrics. Moreover, we present a review on the determination of infarct and penumbra. Finally, we reveal the popularity and future trend of CTP imaging.
Collapse
Affiliation(s)
- Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Cuidie Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhixiong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhen Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sijin Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| |
Collapse
|
7
|
Perik TH, van Genugten EAJ, Aarntzen EHJG, Smit EJ, Huisman HJ, Hermans JJ. Quantitative CT perfusion imaging in patients with pancreatic cancer: a systematic review. Abdom Radiol (NY) 2022; 47:3101-3117. [PMID: 34223961 PMCID: PMC9388409 DOI: 10.1007/s00261-021-03190-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death with a 5-year survival rate of 10%. Quantitative CT perfusion (CTP) can provide additional diagnostic information compared to the limited accuracy of the current standard, contrast-enhanced CT (CECT). This systematic review evaluates CTP for diagnosis, grading, and treatment assessment of PDAC. The secondary goal is to provide an overview of scan protocols and perfusion models used for CTP in PDAC. The search strategy combined synonyms for 'CTP' and 'PDAC.' Pubmed, Embase, and Web of Science were systematically searched from January 2000 to December 2020 for studies using CTP to evaluate PDAC. The risk of bias was assessed using QUADAS-2. 607 abstracts were screened, of which 29 were selected for full-text eligibility. 21 studies were included in the final analysis with a total of 760 patients. All studies comparing PDAC with non-tumorous parenchyma found significant CTP-based differences in blood flow (BF) and blood volume (BV). Two studies found significant differences between pathological grades. Two other studies showed that BF could predict neoadjuvant treatment response. A wide variety in kinetic models and acquisition protocol was found among included studies. Quantitative CTP shows a potential benefit in PDAC diagnosis and can serve as a tool for pathological grading and treatment assessment; however, clinical evidence is still limited. To improve clinical use, standardized acquisition and reconstruction parameters are necessary for interchangeability of the perfusion parameters.
Collapse
Affiliation(s)
- T H Perik
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - E A J van Genugten
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - E H J G Aarntzen
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - E J Smit
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - H J Huisman
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - J J Hermans
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Maehira H, Tsuji Y, Iida H, Mori H, Nitta N, Maekawa T, Kaida S, Miyake T, Tani M. Estimated tumor blood flow as a predictive imaging indicator of therapeutic response in pancreatic ductal adenocarcinoma: use of three-phase contrast-enhanced computed tomography. Int J Clin Oncol 2022; 27:373-382. [PMID: 34783936 DOI: 10.1007/s10147-021-02066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Preoperative chemotherapy or chemoradiotherapy is a common strategy for treating pancreatic ductal adenocarcinoma (PDAC). This study aimed to assess the association between the therapeutic response in PDAC and tumor blood circulation. METHODS The medical records of patients who underwent chemotherapy or chemoradiotherapy prior to pancreatectomy for PDAC were reviewed. Of these, patient data that included three-phase contrast-enhanced computed tomography (CECT) findings before treatments were used in this study. We evaluated the estimated tumor blood flow (eTBF) using CECT. According to the therapeutic histopathological response defined by the Evans classification, patients were divided into poor (grade I/IIa) and good (grade IIb/III/IV) responder groups. The variables, including eTBF, were compared between the two groups. RESULTS Thirty patients were enrolled in this study. Of these, 13 (43.3%) (grade IIB/III/IV: 8/4/1 patients) were categorized into the good responder group and 17 patients (56.7%) (grade I/IIA: 4/13 patients) were categorized into the poor responder group. eTBF was significantly higher in the good responder group (0.39 s-1 vs. 0.32 s-1, p = 0.007). An eTBF ≥ 0.36 s-1 was found to be an independent predictive factor for the destruction of over 50% of tumor cells (p = 0.036; odds ratio, 9.71; 95% confidence interval, 1.16-81.30). CONCLUSIONS eTBF can be used to predict the therapeutic histopathological response in PDAC prior to treatment.
Collapse
Affiliation(s)
- Hiromitsu Maehira
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihisa Tsuji
- Department of Community and General Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Hokkaido, S1 W17060-8556, Japan.
| | - Hiroya Iida
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Haruki Mori
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Nobuhito Nitta
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Takeru Maekawa
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Sachiko Kaida
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Toru Miyake
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Masaji Tani
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
9
|
Auckburally A, Nyman G, Wiklund MK, Straube AK, Perchiazzi G, Beda A, Ley CJ, Lord PF. Development of a method to measure regional perfusion of the lung in anesthetized ponies using computed tomography angiography and the maximum slope model. Am J Vet Res 2022; 83:162-170. [PMID: 34851854 DOI: 10.2460/ajvr.21.03.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To develop a method based on CT angiography and the maximum slope model (MSM) to measure regional lung perfusion in anesthetized ponies. ANIMALS 6 ponies. PROCEDURES Anesthetized ponies were positioned in dorsal recumbency in the CT gantry. Contrast was injected, and the lungs were imaged while ponies were breathing spontaneously and while they were mechanically ventilated. Two observers delineated regions of interest in aerated and atelectatic lung, and perfusion in those regions was calculated with the MSM. Measurements obtained with a computerized method were compared with manual measurements, and computerized measurements were compared with previously reported measurements obtained with microspheres. RESULTS Perfusion measurements obtained with the MSM were similar to previously reported values obtained with the microsphere method. While ponies were spontaneously breathing, mean ± SD perfusion for aerated and atelectatic lung regions were 4.0 ± 1.9 and 5.0 ± 1.2 mL/min/g of lung tissue, respectively. During mechanical ventilation, values were 4.6 ± 1.2 and 2.7 ± 0.7 mL/min/g of lung tissue at end expiration and 4.1 ± 0.5 and 2.7 ± 0.6 mL/min/g of lung tissue at peak inspiration. Intraobserver agreement was acceptable, but interobserver agreement was lower. Computerized measurements compared well with manual measurements. CLINICAL RELEVANCE Findings showed that CT angiography and the MSM could be used to measure regional lung perfusion in dorsally recumbent anesthetized ponies. Measurements are repeatable, suggesting that the method could be used to determine efficacy of therapeutic interventions to improve ventilation-perfusion matching and for other studies for which measurement of regional lung perfusion is necessary.
Collapse
Affiliation(s)
- Adam Auckburally
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Görel Nyman
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Maja K Wiklund
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna K Straube
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Alessandro Beda
- Department of Electronic Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Charles J Ley
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Peter F Lord
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Garbino N, Brancato V, Salvatore M, Cavaliere C. A Systematic Review on the Role of the Perfusion Computed Tomography in Abdominal Cancer. Dose Response 2021; 19:15593258211056199. [PMID: 34880716 PMCID: PMC8647276 DOI: 10.1177/15593258211056199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background and purpose Perfusion Computed Tomography (CTp) is an imaging technique which allows
quantitative and qualitative evaluation of tissue perfusion through dynamic
CT acquisitions. Since CTp is still considered a research tool in the field
of abdominal imaging, the aim of this work is to provide a systematic
summary of the current literature on CTp in the abdominal region to clarify
the role of this technique for abdominal cancer applications. Materials and Methods A systematic literature search of PubMed, Web of Science, and Scopus was
performed to identify original articles involving the use of CTp for
clinical applications in abdominal cancer since 2011. Studies were included
if they reported original data on CTp and investigated the clinical
applications of CTp in abdominal cancer. Results Fifty-seven studies were finally included in the study. Most of the included
articles (33/57) dealt with CTp at the level of the liver, while a low
number of studies investigated CTp for oncologic diseases involving UGI
tract (8/57), pancreas (8/57), kidneys (3/57), and colon–rectum (5/57). Conclusions Our study revealed that CTp could be a valuable functional imaging tool in
the field of abdominal oncology, particularly as a biomarker for monitoring
the response to anti-tumoral treatment.
Collapse
|
11
|
Lobo R, Turk S, Bapuraj JR, Srinivasan A. Advanced CT and MR Imaging of the Posttreatment Head and Neck. Neuroimaging Clin N Am 2021; 32:133-144. [PMID: 34809834 DOI: 10.1016/j.nic.2021.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Advances in MR and computed tomography (CT) techniques have resulted in greater fidelity in the assessment of treatment response and residual tumor on one hand and the assessment of recurrent head and neck malignancies on the other hand. The advances in MR techniques primarily are related to diffusion and perfusion imaging which rely on the intrinsic architecture of the tissues and organ systems. The techniques exploit the density of the cellular architecture; and the vascularity of benign and malignant lesions which in turn affect the changes in the passage of contrast through the vascular bed. Dual-energy CT and CT perfusion are the major advances in CT techniques that have found significant applications in the assessment of treatment response and tumor recurrence.
Collapse
Affiliation(s)
- Remy Lobo
- Neuroradiology Division, Radiology, Michigan Medicine, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Sevcan Turk
- Neuroradiology Division, Radiology, Michigan Medicine, 1500 E Medical Center Drive, Ann Arbor, MI 48109, USA
| | - J Rajiv Bapuraj
- Neuroradiology Division, Radiology, Michigan Medicine, 1500 E Medical Center Drive, B2A209, Ann Arbor, MI 48109, USA
| | - Ashok Srinivasan
- Neuroradiology Division, Radiology, Michigan Medicine, 1500 E Medical Center Drive, B2A209, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Drljevic-Nielsen A, Rasmussen F, Mains JR, Thorup K, Donskov F. Blood Volume as a new functional image-based biomarker of progression in metastatic renal cell carcinoma. Sci Rep 2021; 11:19659. [PMID: 34608226 PMCID: PMC8490379 DOI: 10.1038/s41598-021-99122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
RECIST v1.1 has limitations in evaluating progression. We assessed Dynamic Constrast Enhanced Computed Tomography (DCE-CT) identified Blood Volume (BV) for the evaluation of progressive disease (PD) in patients with metastatic renal cell carcinoma (mRCC). BV was quantified prospectively at baseline, after one month, then every three months until PD. Relative changes (ΔBV) were assessed at each timepoint compared with baseline values. The primary endpoint was Time to PD (TTP), the secondary endpoint was Time to the scan prior to PD (PDminus1). Cox proportional hazard models adjusted ΔBV for treatments and International mRCC Database Consortium factors. A total of 62 patients had analyzable scans at the PD timepoint. Median BV was 23.92 mL × 100 g-1 (range 4.40-399.04) at PD and 26.39 mL × 100 g-1 (range 8.70-77.44) at PDminus1. In the final multivariate analysis higher ΔBV was statistically significantly associated with shorter Time to PD, HR 1.11 (95% CI 1.07-1.15, P < 0.001). Also assessed at PDminus1, higher ΔBV was significantly associated with shorter time to PD, HR 1.14 (95% CI 1.01-1.28, P = 0.031). In conclusion, DCE-CT identified BV is a new image-based biomarker of therapy progression in patients with mRCC.
Collapse
Affiliation(s)
- Aska Drljevic-Nielsen
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark.,Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
| | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Jill Rachel Mains
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Kennet Thorup
- Department of Radiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Frede Donskov
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark.
| |
Collapse
|
13
|
Drljevic-Nielsen A, Rasmussen F, Nielsen PS, Stilling C, Thorup K, Mains JR, Madsen HHT, Donskov F. Prognostic value of DCE-CT-derived blood volume and flow compared to core biopsy microvessel density in patients with metastatic renal cell carcinoma. Eur Radiol Exp 2021; 5:32. [PMID: 34327591 PMCID: PMC8322257 DOI: 10.1186/s41747-021-00232-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Angiogenesis is prominent in metastatic renal cell carcinoma (mRCC). We compared two angiogenesis assessment methods: dynamic contrast-enhanced computed tomography (DCE-CT)-derived blood volume (BV) and blood flow (BF) and core biopsy microvessel density (MVD). METHODS As planned in DaRenCa Study-1 study, DCE-CT and core biopsy were performed from the same tumour/metastasis at baseline. MVD was assessed by CD34 immunostaining in tumour (CD34-indexT) or tumour including necrosis (CD34-indexTN). BV and BF were assessed using the DCE-CT software. Overall survival (OS) and progression-free survival (PFS) were assessed by Kaplan-Meier analysis. Spearman coefficient (rho) tested the correlation between MVD and BV, BF, or CT density (HU). RESULTS At baseline, 25 patients had analysable scans and tissue. BVdeconv, BVPatlak, and BFdeconv > median were associated with favourable OS (43.2 versus 14.6 months, p = 0.002; 31.6 versus 20.2 months, p = 0.015; and 31.6 versus 24.5 months, p = 0.019). CD34-indexT and CD34-indexTN did not correlate with age (p = 0.543), sex (p = 0.225), treatment (p = 0.848), International mRCC Database Consortium category (p = 0.152), synchronous versus metachronous metastatic disease (p = 0.378), or tumour volume (p = 0.848). CD34-indexT or CD34-indexTN > median was not associated with PFS (p = 0.441 and p = 0.854, respectively) or OS (p = 0.987 and p =0.528, respectively). CD34-indexT or CD34-indexTN was not correlated with BV, BF, or HU (rho 0.20-0.26). CONCLUSIONS Differently from MVD, DCE-CT-derived BV and BF had prognostic impact and may better reflect angiogenesis in mRCC. TRIAL REGISTRATION NCT01274273.
Collapse
Affiliation(s)
- Aska Drljevic-Nielsen
- Department of Oncology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark. .,Department of Radiology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark.
| | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Patricia Switten Nielsen
- Department of Pathology, Aarhus University Hospital (AUH), Palle Juul-Jensen Blvd. 99, 8200, Aarhus N, Denmark
| | - Christina Stilling
- Department of Pathology, Aarhus University Hospital (AUH), Palle Juul-Jensen Blvd. 99, 8200, Aarhus N, Denmark
| | - Kennet Thorup
- Department of Radiology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Jill Rachel Mains
- Department of Radiology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Hans Henrik Torp Madsen
- Department of Radiology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| | - Frede Donskov
- Department of Oncology, Aarhus University Hospital (AUH), Palle Juul-Jensens Blvd. 99, 8200, Aarhus N, Denmark
| |
Collapse
|
14
|
Niu S, Liu H, Zhang M, Wang M, Wang J, Ma J. Iterative reconstruction for low-dose cerebral perfusion computed tomography using prior image induced diffusion tensor. Phys Med Biol 2021; 66. [PMID: 34081027 DOI: 10.1088/1361-6560/ac0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/18/2021] [Indexed: 11/12/2022]
Abstract
Cerebral perfusion computed tomography (CPCT) can depict the functional status of cerebral circulation at the tissue level; hence, it has been increasingly used to diagnose patients with cerebrovascular disease. However, there is a significant concern that CPCT scanning protocol could expose patients to excessive radiation doses. Although reducing the x-ray tube current when acquiring CPCT projection data is an effective method for reducing radiation dose, this technique usually results in degraded image quality. To enhance the image quality of low-dose CPCT, we present a prior image induced diffusion tensor (PIDT) for statistical iterative reconstruction, based on the penalized weighted least-squares (PWLS) criterion, which we referred to as PWLS-PIDT, for simplicity. Specifically, PIDT utilizes the geometric features of pre-contrast scanned high-quality CT image as a structure prior for PWLS reconstruction; therefore, the low-dose CPCT images are enhanced while preserving important features in the target image. An effective alternating minimization algorithm is developed to solve the associated objective function in the PWLS-PIDT reconstruction. We conduct qualitative and quantitative studies to evaluate the PWLS-PIDT reconstruction with a digital brain perfusion phantom and patient data. With this method, the noise in the reconstructed CPCT images is more substantially reduced than that of other competing methods, without sacrificing structural details significantly. Furthermore, the CPCT sequential images reconstructed via the PWLS-PIDT method can derive more accurate hemodynamic parameter maps than those of other competing methods.
Collapse
Affiliation(s)
- Shanzhou Niu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Hong Liu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Mengzhen Zhang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Min Wang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States of America
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|
15
|
D'Alonzo RA, Gill S, Rowshanfarzad P, Keam S, MacKinnon KM, Cook AM, Ebert MA. In vivo noninvasive preclinical tumor hypoxia imaging methods: a review. Int J Radiat Biol 2021; 97:593-631. [PMID: 33703994 DOI: 10.1080/09553002.2021.1900943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Tumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers. Although there are multiple different ways to measure tumor hypoxia and related factors, there is no standard for quantifying spatial and temporal tumor hypoxia distributions in preclinical research or in the clinic. This review compares imaging methods utilized for the purpose of assessing spatio-temporal patterns of hypoxia in the preclinical setting. Imaging methods provide varying levels of spatial and temporal resolution regarding different aspects of hypoxia, and with varying advantages and disadvantages. The choice of modality requires consideration of the specific experimental model, the nature of the required characterization and the availability of complementary modalities as well as immunohistochemistry.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Synat Keam
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Alistair M Cook
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
- 5D Clinics, Claremont, Australia
| |
Collapse
|
16
|
Koell M, Klauss M, Skornitzke S, Mayer P, Fritz F, Stiller W, Grenacher L. Computed Tomography Perfusion Analysis of Pancreatic Adenocarcinoma using Deconvolution, Maximum Slope, and Patlak Methods - Evaluation of Diagnostic Accuracy and Interchangeability of Cut-Off Values. ROFO-FORTSCHR RONTG 2021; 193:1062-1073. [PMID: 33772484 DOI: 10.1055/a-1401-0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE The goal of this study was to evaluate the diagnostic accuracy of perfusion computed tomography (CT) parameters obtained by different mathematical-kinetic methods for distinguishing pancreatic adenocarcinoma from normal tissue. To determine cut-off values and to assess the interchangeability of cut-off values, which were determined by different methods. MATERIALS AND METHODS Perfusion CT imaging of the pancreas was prospectively performed in 23 patients. 19 patients with histopathologically confirmed pancreatic adenocarcinoma were included in the study. Blood flow (BF), blood volume (BV) and permeability-surface area product (PS) were measured in pancreatic adenocarcinoma and normal tissue with the deconvolution (BF, BV, PS), maximum slope (BF), and Patlak methods (BV, PS). The interchangeability of cut-off values was examined by assessing agreement between BF, BV, and PS measured with different mathematical-kinetic methods. RESULTS Bland-Altman analysis demonstrated poor agreement between perfusion parameters, measured with different mathematical-kinetic methods. According to receiver operating characteristic (ROC) analysis, PS measured with the Patlak method had the significantly lowest diagnostic accuracy (area under ROC curve = 0.748). All other parameters were of high diagnostic accuracy (area under ROC curve = 0.940-0.997), although differences in diagnostic accuracy were not statistically different. Cut-off values for BF of ≤ 91.83 ml/100 ml/min and for BV of ≤ 5.36 ml/100 ml, both measured with the deconvolution method, appear to be the most appropriate cut-off values to distinguish pancreatic adenocarcinoma from normal tissue. CONCLUSION Perfusion parameters obtained by different methods are not interchangeable. Therefore, cut-off values, which were determined using different methods, are not interchangeable either. Perfusion parameters can help to distinguish pancreatic adenocarcinoma from normal tissue with high diagnostic accuracy, except for PS measured with the Patlak method. KEY POINTS · Perfusion CT parameters showed high diagnostic accuracy in differentiating between pancreatic adenocarcinoma and normal tissue.. · Only PS measured with the Patlak method showed a significantly lower diagnostic accuracy.. · Perfusion parameters measured with different mathematical-kinetic methods are not interchangeable.. · A specific cut-off value must be determined for each method and each perfusion parameter.. CITATION FORMAT · Koell M, Klauss M, Skornitzke S et al. Computed Tomography Perfusion Analysis of Pancreatic Adenocarcinoma with the Deconvolution, Maximum Slope, and Patlak Methods - Evaluation of Diagnostic Accuracy and Interchangeability of Cut-Off Values. Fortschr Röntgenstr 2021; 193: 1062 - 1073.
Collapse
Affiliation(s)
- Marco Koell
- Clinic of Diagnostic and Interventional Radiology, University of Heidelberg, Germany
| | - Miriam Klauss
- Clinic of Diagnostic and Interventional Radiology, University of Heidelberg, Germany
| | - Stephan Skornitzke
- Clinic of Diagnostic and Interventional Radiology, University of Heidelberg, Germany
| | - Philipp Mayer
- Clinic of Diagnostic and Interventional Radiology, University of Heidelberg, Germany
| | | | - Wolfram Stiller
- Clinic of Diagnostic and Interventional Radiology, University of Heidelberg, Germany
| | - Lars Grenacher
- Imaging and Prevention Center, Conradia Radiology Munich, Germany
| |
Collapse
|
17
|
Xu Y, Shu Z, Song G, Liu Y, Pang P, Wen X, Gong X. The Role of Preoperative Computed Tomography Radiomics in Distinguishing Benign and Malignant Tumors of the Parotid Gland. Front Oncol 2021; 11:634452. [PMID: 33777789 PMCID: PMC7988088 DOI: 10.3389/fonc.2021.634452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Objective This study aimed to develop and validate an integrated prediction model based on clinicoradiological data and computed tomography (CT)-radiomics for differentiating between benign and malignant parotid gland (PG) tumors via multicentre cohorts. Materials and Methods A cohort of 87 PG tumor patients from hospital #1 who were diagnosed between January 2017 and January 2020 were used for prediction model training. A total of 378 radiomic features were extracted from a single tumor region of interest (ROI) of each patient on each phase of CT images. Imaging features were extracted from plain CT and contrast-enhanced CT (CECT) images. After dimensionality reduction, a radiomics signature was constructed. A combination model was constructed by incorporating the rad-score and CT radiological features. An independent group of 38 patients from hospital #2 was used to validate the prediction models. The model performances were evaluated by receiver operating characteristic (ROC) curve analysis, and decision curve analysis (DCA) was used to evaluate the clinical effectiveness of the models. The radiomics signature model was constructed and the rad-score was calculated based on selected imaging features from plain CT and CECT images. Results Analysis of variance and multivariable logistic regression analysis showed that location, lymph node metastases, and rad-score were independent predictors of tumor malignant status. The ROC curves showed that the accuracy of the support vector machine (SVM)-based prediction model, radiomics signature, location and lymph node status in the training set was 0.854, 0.772, 0.679, and 0.632, respectively; specificity was 0.869, 0.878, 0.734, and 0.773; and sensitivity was 0.731, 0.808, 0.723, and 0.742. In the test set, the accuracy was 0.835, 0.771, 0.653, and 0.608, respectively; the specificity was 0.741, 0.889, 0.852, and 0.812; and the sensitivity was 0.818, 0.790, 0.731, and 0.716. Conclusions The combination model based on the radiomics signature and CT radiological features is capable of evaluating the malignancy of PG tumors and can help clinicians guide clinical tumor management.
Collapse
Affiliation(s)
- Yuyun Xu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ge Song
- Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yijun Liu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Peipei Pang
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Hangzhou, China
| | - Xuehua Wen
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangyang Gong
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China.,Institute of Artificial Intelligence and Remote Imaging, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
18
|
Avsenik J, Bajrović FF, Gradišek P, Kejžar N, Šurlan Popović K. Prognostic value of CT perfusion and permeability imaging in traumatic brain injury. J Trauma Acute Care Surg 2021; 90:484-491. [PMID: 33009337 DOI: 10.1097/ta.0000000000002964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Currently established prognostic models in traumatic brain injury (TBI) include noncontrast computed tomography (CT) which is insensitive to early perfusion alterations associated with secondary brain injury. Perfusion CT (PCT) on the other hand offers insight into early perfusion abnormalities. We hypothesized that adding CT perfusion and permeability data to the established outcome predictors improves the performance of the prognostic model. METHODS A prospective cohort study of consecutive 50 adult patients with head injury and Glasgow Coma Scale score of 12 or less was performed at a single Level 1 Trauma Centre. Perfusion CT was added to routine control CT 12 hours to 24 hours after admission. Region of interest analysis was performed in six major vascular territories on perfusion and permeability parametric maps. Glasgow Outcome Scale (GOS) was used 6 months later to categorize patients' functional outcomes to favorable (GOS score > 3) or unfavorable (GOS score ≤ 3). We defined core prognostic model, consisting of age, motor Glasgow Coma Scale score, pupillary reactivity, and CT Rotterdam Score. Next, we added perfusion and permeability data as predictors and compared updated models to the core model using cross-validated areas under the receiver operator curves (cv-AUC). RESULTS Significant advantage over core model was shown by the model, containing both mean cerebral extravascular-extracellular volume per unit of tissue volume and cerebral blood volume of the least perfused arterial territory in addition to core predictors (cv-AUC, 0.75; 95% confidence interval, 0.51-0.84 vs. 0.6; 95% confidence interval, 0.37-0.74). CONCLUSION The development of cerebral ischemia and traumatic cerebral edema constitutes the secondary brain injury and represents the target for therapeutic interventions. Our results suggest that adding CT perfusion and permeability data to the established outcome predictors improves the performance of the prognostic model in the setting of moderate and severe TBI. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
Affiliation(s)
- Jernej Avsenik
- From the Clinical Institute of Radiology (J.A., K.Š.P.), University Medical Centre Ljubljana; Department of Radiology (J.A., K.Š.P.), Faculty of Medicine, University of Ljubljana; Division of Neurology (F.F.B.), University Medical Centre Ljubljana; Institute of Pathophysiology (F.F.B.), Faculty of Medicine, University of Ljubljana; Clinical Department of Anaesthesiology and Intensive Therapy (P.G.), Centre for Intensive Therapy, University Medical Centre Ljubljana; Department of Anaesthesiology with Reanimatology (P.G.), Faculty of Medicine, University of Ljubljana and Institute for Biostatistics and Medical Informatics (N.K.), Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
19
|
Veit-Haibach P, Huellner MW, Banyai M, Mafeld S, Heverhagen J, Strobel K, Sah BR. CT perfusion in peripheral arterial disease-hemodynamic differences before and after revascularisation. Eur Radiol 2021; 31:5507-5513. [PMID: 33547479 PMCID: PMC8270809 DOI: 10.1007/s00330-021-07692-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/16/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Objectives The purpose of this study was the assessment of volumetric CT perfusion (CTP) of the lower leg musculature in patients with symptomatic peripheral arterial disease (PAD) before and after interventional revascularisation. Methods Twenty-nine consecutive patients with symptomatic PAD of the lower extremities requiring interventional revascularisation were assessed prospectively. All patients underwent a CTP scan of the lower leg, and hemodynamic and angiographic assessment, before and after intervention. Ankle-brachial pressure index (ABI) was determined. CTP parameters were calculated with a perfusion software, acting on a no outflow assumption. A sequential two-compartment model was used. Differences in CTP parameters were assessed with non-parametric tests. Results The cohort consisted of 24 subjects with an occlusion, and five with a high-grade stenosis. The mean blood flow before/after (BFpre and BFpost, respectively) was 7.42 ± 2.66 and 10.95 ± 6.64 ml/100 ml*min−1. The mean blood volume before/after (BVpre and BVpost, respectively) was 0.71 ± 0.35 and 1.25 ± 1.07 ml/100 ml. BFpost and BVpost were significantly higher than BFpre and BVpre in the treated limb (p = 0.003 and 0.02, respectively), but not in the untreated limb (p = 0.641 and 0.719, respectively). Conclusions CTP seems feasible for assessing hemodynamic differences in calf muscles before and after revascularisation in patients with symptomatic PAD. We could show that CTP parameters BF and BV are significantly increased after revascularisation of the symptomatic limb. In the future, this quantitative method might serve as a non-invasive method for surveillance and therapy control of patients with peripheral arterial disease. Key Points • CTP imaging of the lower limb in patients with symptomatic PAD seems feasible for assessing hemodynamic differences before and after revascularisation in PAD patients. • This quantitative method might serve as a non-invasive method, for surveillance and therapy control of patients with PAD. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-07692-5.
Collapse
Affiliation(s)
- Patrick Veit-Haibach
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,Department of Radiology, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,Joint Department of Medical Imaging, University of Toronto, Toronto, Canada.,Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,University of Zurich, Zurich, Switzerland.,Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Martin Banyai
- Department of Internal Medicine, Subdivision of Angiology, Lucerne Cantonal Hospital, Lucerne, Switzerland.,Clinic for Angiology, University Hospital Zurich, Zurich, Switzerland
| | - Sebastian Mafeld
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Johannes Heverhagen
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
| | - Klaus Strobel
- Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Bert-Ram Sah
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland. .,University of Zurich, Zurich, Switzerland. .,Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland. .,Department of Cancer Imaging, King's College London, London, UK.
| |
Collapse
|
20
|
Reproducibility of Computed Tomography perfusion parameters in hepatic multicentre study in patients with colorectal cancer. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Rao MR, Norquay G, Stewart NJ, Wild JM. Measuring 129 Xe transfer across the blood-brain barrier using MR spectroscopy. Magn Reson Med 2021; 85:2939-2949. [PMID: 33458859 PMCID: PMC7986241 DOI: 10.1002/mrm.28646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE This study develops a tracer kinetic model of xenon uptake in the human brain to determine the transfer rate of inhaled hyperpolarized 129 Xe from cerebral blood to gray matter that accounts for the effects of cerebral physiology, perfusion and magnetization dynamics. The 129 Xe transfer rate is expressed using a tracer transfer coefficient, which estimates the quantity of hyperpolarized 129 Xe dissolved in cerebral blood under exchange with depolarized 129 Xe dissolved in gray matter under equilibrium of concentration. THEORY AND METHODS Time-resolved MR spectra of hyperpolarized 129 Xe dissolved in the human brain were acquired from three healthy volunteers. Acquired spectra were numerically fitted with five Lorentzian peaks in accordance with known 129 Xe brain spectral peaks. The signal dynamics of spectral peaks for gray matter and red blood cells were quantified, and correction for the 129 Xe T1 dependence upon blood oxygenation was applied. 129 Xe transfer dynamics determined from the ratio of the peaks for gray matter and red blood cells was numerically fitted with the developed tracer kinetic model. RESULTS For all the acquired NMR spectra, the developed tracer kinetic model fitted the data with tracer transfer coefficients between 0.1 and 0.14. CONCLUSION In this study, a tracer kinetic model was developed and validated that estimates the transfer rate of HP 129 Xe from cerebral blood to gray matter in the human brain.
Collapse
Affiliation(s)
- Madhwesha R Rao
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| | - Graham Norquay
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| | - Neil J Stewart
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| | - Jim M Wild
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease and Insigneo Institute of In-silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
22
|
Hemachandran N, Meena S, Kumar A, Sharma R, Gupta D, Gamanagatti S. Utility of admission perfusion CT for the prediction of suboptimal outcome following uncomplicated minor traumatic brain injury. Emerg Radiol 2021; 28:541-548. [PMID: 33420847 DOI: 10.1007/s10140-020-01876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE To compare the perfusion parameters of patients with uncomplicated mild traumatic brain injury (mTBI) with healthy controls and to assess whether admission perfusion CT parameters can be used to predict outcome at 6 months post-injury in patients with uncomplicated mTBI. METHODS Institute ethical committee approval was obtained for this prospective cohort study and informed written consent obtained from all subjects. Patients who sustained mTBI and had no abnormalities on non-contrast CT from June 2010 to January 2012 (20 months) and 10 healthy controls were included and underwent perfusion CT at admission. Outcome was determined at 6 months follow-up using the extended Glasgow Coma Outcome Scale score. RESULTS Forty-nine patients were included, of which 16 (32.7%) had symptoms at 6 months post-injury (suboptimal outcome). The mean cerebral blood flow and volume were lower in both the gray and white matter of all three arterial territories in the study group than in the control group (p value < 0.05). In the study group, these values were lower in those with suboptimal outcome than in those with optimal outcome (no symptoms). Cerebral blood flow showed higher area under the curve for predicting the outcome. CONCLUSION Perfusion parameters are altered even in patients with uncomplicated mTBI. A single ROI (region of interest) evaluation of the gray matter in the posterior cerebral artery territory on admission perfusion CT could provide a quick and efficient way to predict patients who would have a suboptimal outcome at 6 months post-injury.
Collapse
Affiliation(s)
| | | | - Atin Kumar
- All India Institute of Medical Sciences, New Delhi, India
| | - Raju Sharma
- All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gupta
- All India Institute of Medical Sciences, New Delhi, India
| | - Shivanand Gamanagatti
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Room no. 81b, 110029, New Delhi, India.
| |
Collapse
|
23
|
Johnson GB, Harms HJ, Johnson DR, Jacobson MS. PET Imaging of Tumor Perfusion: A Potential Cancer Biomarker? Semin Nucl Med 2020; 50:549-561. [PMID: 33059824 DOI: 10.1053/j.semnuclmed.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Perfusion, as measured by imaging, is considered a standard of care biomarker for the evaluation of many tumors. Measurements of tumor perfusion may be used in a number of ways, including improving the visual detection of lesions, differentiating malignant from benign findings, assessing aggressiveness of tumors, identifying ischemia and by extension hypoxia within tumors, and assessing treatment response. While most clinical perfusion imaging is currently performed with CT or MR, a number of methods for PET imaging of tumor perfusion have been described. The inert PET radiotracer 15O-water PET represents the recognized gold standard for absolute quantification of tissue perfusion in both normal tissue and a variety of pathological conditions including cancer. Other cancer PET perfusion imaging strategies include the use of radiotracers with high first-pass uptake, analogous to those used in cardiac perfusion PET. This strategy produces more visually pleasing high-contrast images that provide relative rather than absolute perfusion quantification. Lastly, multiple timepoint imaging of PET tracers such as 18F-FDG, are not specifically optimized for perfusion, but have advantages related to availability, convenience, and reimbursement. Multiple obstacles have thus far blocked the routine use of PET imaging for tumor perfusion, including tracer production and distribution, image processing, patient body coverage, clinical validation, regulatory approval and reimbursement, and finally feasible clinical workflows. Fortunately, these obstacles are being overcome, especially within larger imaging centers, opening the door for PET imaging of tumor perfusion to become standard clinical practice. In the foreseeable future, it is possible that whole-body PET perfusion imaging with 15O-water will be able to be performed in a single imaging session concurrent with standard PET imaging techniques such as 18F-FDG-PET. This approach could establish an efficient clinical workflow. The resultant ability to measure absolute tumor blood flow in combination with glycolysis will provide important complementary information to inform prognosis and clinical decisions.
Collapse
Affiliation(s)
- Geoffrey B Johnson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN; Department of Immunology, Mayo Clinic, Rochester, MN.
| | - Hendrik J Harms
- Department of Surgical Sciences, Nuclear Medicine, PET and Radiology, Uppsala University, Uppsala Sweden
| | - Derek R Johnson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN
| | - Mark S Jacobson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
24
|
Park S, Jung JW, Je H, Jang Y, Choi J. Effect of slice thickness on computed tomographic perfusion analysis of the pancreas in healthy dogs. Am J Vet Res 2020; 81:732-738. [PMID: 33112168 DOI: 10.2460/ajvr.81.9.732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effect of slice thickness on CT perfusion analysis of the pancreas in healthy dogs. ANIMALS 12 healthy Beagles. PROCEDURES After precontrast CT scans, CT perfusion scans of the pancreatic body were performed every second for 30 seconds by sequential CT scanning after injection of contrast medium (iohexol; 300 mg of 1/kg) at a rate of 3 mL/s. Each dog underwent CT perfusion scans twice in a crossover-design study with 2 different slice thicknesses (2.4 and 4.8 mm). Computed tomographic pancreatic perfusion variables, including blood flow, blood volume determined with the maximum slope model, times to the start of enhancement and peak enhancement, permeability, and blood volume determined by Patlak plot analysis, were measured independently by 2 reviewers. The CT perfusion variables were compared between slice thicknesses. Interoperator reproducibility was determined by ICC calculation. RESULTS Interoperator reproducibility of CT perfusion variable measurements was excellent on 2.4-mm (mean ± SD ICC, 0.81 ± 0.17) and 4.8-mm (0.90 ± 0.07) slice thicknesses, except for time to peak pancreatic enhancement on 2.4-mm-thick slices, which had moderate reproducibility (intraclass correlation coefficient, 0.473). There was no significant difference in measurements of blood flow, blood volume by either method, times to the start and peak of pancreatic enhancement, or permeability between slice thicknesses. CONCLUSIONS AND CLINICAL RELEVANCE Results supported that a thin slice thickness of 2.4 mm can be used for assessment of pancreatic perfusion variables in healthy dogs.
Collapse
|
25
|
Skornitzke S, Kauczor HU, Stiller W. Virtual monoenergetic reconstructions of dynamic DECT acquisitions for calculation of perfusion maps of blood flow: Quantitative comparison to conventional, dynamic 80 kV p CT perfusion. Eur J Radiol 2020; 131:109262. [PMID: 32942200 DOI: 10.1016/j.ejrad.2020.109262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Investigation of potential improvements in dynamic CT perfusion measurements by exploitation of improved visualization of contrast agent in virtual monoenergetic reconstructions of images acquired with dual-energy computed tomography (DECT). METHOD For 17 patients with pancreatic carcinoma, dynamic dual-source DECT acquisitions were performed at 80kVp/Sn140kVp every 1.5 s over 51 s. Virtual monoenergetic images (VMI) were reconstructed for photon energies between 40 keV and 150 keV (5 keV steps). Using the maximum-slope model, perfusion maps of blood flow were calculated from VMIs and 80kVp images and compared quantitatively with regard to blood flow measured in regions of interest in healthy tissue and carcinoma, standard deviation (SD), and absolute-difference-to-standard-deviation ratio (ADSDR) of measurements. RESULTS On average, blood flow calculated from VMIs increased with increasing energy levels from 114.3 ± 37.2 mL/100 mL/min (healthy tissue) and 45.6 ± 25.3 mL/100 mL/min (carcinoma) for 40 keV to 128.6 ± 58.9 mL/100 mL/min (healthy tissue) and 75.5 ± 49.8 mL/100 mL/min (carcinoma) for 150 keV, compared to 114.2 ± 37.4 mL/100 mL/min (healthy tissue) and 46.5 ± 26.6 mL/100 mL/min (carcinoma) for polyenergetic 80kVp. Differences in blood flow between tissue types were significant for all energies. Differences between perfusion maps calculated from VMIs and 80kVp images were not significant below 110 keV. SD and ADSDR were significantly better for perfusion maps calculated from VMIs at energies between 40 keV and 55 keV than for those calculated from 80kVp images. Compared to effective dose of dynamic 80kVp acquisitions (4.6 ± 2.2mSv), dose of dynamic DECT/VMI acquisitions (8.0 ± 3.7mSv) was higher. CONCLUSIONS Perfusion maps of blood flow based on low-energy VMIs between 40 keV and 55 keV offer improved robustness and quality of quantitative measurements over those calculated from 80kVp image data (reference standard), albeit at increased patient radiation exposure.
Collapse
Affiliation(s)
- Stephan Skornitzke
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| | - Wolfram Stiller
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Capasso R, Vallone S, Serra N, Zelent G, Verganti L, Sacchetti F, Bigliardi G, Picchetto L, Caranci F, Zini A. Qualitative versus automatic evaluation of CT perfusion parameters in acute posterior circulation ischaemic stroke. Neuroradiology 2020; 63:317-330. [PMID: 32813027 PMCID: PMC7880970 DOI: 10.1007/s00234-020-02517-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022]
Abstract
Purpose To compare the diagnostic accuracy (ACC) in the detection of acute posterior circulation strokes between qualitative evaluation of software-generated colour maps and automatic assessment of CT perfusion (CTP) parameters. Methods Were retrospectively collected 50 patients suspected of acute posterior circulation stroke who underwent to CTP (GE “Lightspeed”, 64 slices) within 24 h after symptom onset between January 2016 and December 2018. The Posterior circulation-Acute Stroke Prognosis Early CT Score (pc-ASPECTS) was used for quantifying the extent of ischaemic areas on non-contrast (NC)CT and colour-coded maps generated by CTP4 (GE) and RAPID (iSchemia View) software. Final pc-ASPECTS was calculated on follow-up NCCT and/or MRI (Philips Intera 3.0 T or Philips Achieva Ingenia 1.5 T). RAPID software also elaborated automatic quantitative mismatch maps. Results By qualitative evaluation of colour-coded maps, MTT-CTP4D and Tmax-RAPID showed the highest sensitivity (SE) (88.6% and 90.9%, respectively) and ACC (84% and 88%, respectively) compared with the other perfusion parameters (CBV, CBF). Baseline NCCT and CBF provided by RAPID quantitative perfusion mismatch maps had the lowest SE (29.6% and 6.8%, respectively) and ACC (38% and 18%, respectively). CBF and Tmax assessment provided by quantitative RAPID perfusion mismatch maps showed significant lower SE and ACC than qualitative evaluation. No significant differences were found between the pc-ASPECTSs assessed on colour-coded MTT and Tmax maps neither between the scores assessed on colour-coded CBV-CTP4D and CBF-RAPID maps. Conclusion Qualitative analysis of colour-coded maps resulted more sensitive and accurate in the detection of ischaemic changes than automatic quantitative analysis.
Collapse
Affiliation(s)
- Raffaella Capasso
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Via Francesco De Sanctis, 1, 86100, Campobasso, Italy. .,Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, Naples, Italy.
| | - Stefano Vallone
- Neuroradiology Unit, Ospedale Civile S.Agostino-Estense, Azienda Ospedaliero-Universitaria di Modena, Dipartimento di Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicola Serra
- Statistic Unit, Department of Public Health, University of Federico II, Naples, Italy
| | - Gabriele Zelent
- Neuroradiology Unit, Ospedale Civile S.Agostino-Estense, Azienda Ospedaliero-Universitaria di Modena, Dipartimento di Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Verganti
- Neuroradiology Unit, Ospedale Civile S.Agostino-Estense, Azienda Ospedaliero-Universitaria di Modena, Dipartimento di Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Sacchetti
- Neuroradiology Unit, Ospedale Civile S.Agostino-Estense, Azienda Ospedaliero-Universitaria di Modena, Dipartimento di Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | - Guido Bigliardi
- Stroke Unit, Ospedale Civile S.Agostino-Estense, Azienda Ospedaliero-Universitaria di Modena, Dipartimento di Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | - Livio Picchetto
- Stroke Unit, Ospedale Civile S.Agostino-Estense, Azienda Ospedaliero-Universitaria di Modena, Dipartimento di Neuroscienze, University of Modena and Reggio Emilia, Modena, Italy
| | - Ferdinando Caranci
- Department of Medicine and Health Science "V. Tiberio", University of Molise, Via Francesco De Sanctis, 1, 86100, Campobasso, Italy.,Department of Precision Medicine, School of Medicine, "Luigi Vanvitelli" University of Campania, Naples, Italy
| | - Andrea Zini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Department of Neurology and Stroke Center, Maggiore Hospital, Bologna, Italy
| |
Collapse
|
27
|
Drljevic-Nielsen A, Rasmussen F, Mains JR, Thorup K, Donskov F. Baseline blood volume identified by dynamic contrast-enhanced computed tomography as a new independent prognostic factor in metastatic renal cell carcinoma. Transl Oncol 2020; 13:100829. [PMID: 32653813 PMCID: PMC7350156 DOI: 10.1016/j.tranon.2020.100829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/21/2022] Open
Abstract
Background Preliminary data showed prognostic impact of contrast-enhanced computed tomography (DCE-CT) identified Blood Volume (BV) in patients with metastatic renal cell carcinoma (mRCC). BV as an independent prognostic factor remains to be assessed. Materials and Methods DCE-CT identified BV was prospectively quantified in patients with mRCC receiving first line therapies, adjusted for International mRCC Database Consortium (IMDC) individual features and treatments, and associated with overall survival (OS), progression-free survival (PFS) and objective response (ORR), using Cox and logistic regression, respectively. Results 105 patients with mRCC were included. Median baseline BV was 32.87 mL × 100 g−1 (range 9.52 to 92.87 mL × 100 g−1). BV above median was associated with IMDC favorable risk category (P = 0.004), metastasis free interval ≥ 1 year (P = 0.007), male gender (P = 0.032), normal hemoglobin (P = 0.040) and normal neutrophils (P = 0.007), whereas low BV was associated with poor risk IMDC features (P < 0.05). Patients with high vs. low baseline BV had longer PFS (12.5 vs. 5.6 months, P = 0.015) and longer OS (42.2 vs. 22.4 months, P = 0.001), respectively. In multivariate analysis high baseline BV remained independent favorable for OS (HR 0.49, 95% CI 0.30–0.78, P = 0.003) and PFS (HR 0.64; 95% CI 0.42–0.97, P = 0.036). BV as a continuous variable was also associated with OS in the multivariate analysis (HR 0.98, 95% CI 0.96–1.00, P = 0.017). The estimated concordance index (c-index) was 0.688 using IMDC score and 0.701 when BV was added. Conclusions DCE-CT identified Blood Volume is a new, independent prognostic factor in mRCC, which may improve the prognostic accuracy of IMDC.
Collapse
Affiliation(s)
- Aska Drljevic-Nielsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark; Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Finn Rasmussen
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jill R Mains
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Kennet Thorup
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Frede Donskov
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
28
|
Malling B, Røder MA, Lauridsen C, Lönn L. Can Computed Tomography Perfusion Predict Treatment Response After Prostate Artery Embolization: A Feasibility Study. Diagnostics (Basel) 2020; 10:diagnostics10050304. [PMID: 32429192 PMCID: PMC7277883 DOI: 10.3390/diagnostics10050304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 11/16/2022] Open
Abstract
Prostate artery embolization (PAE) is an emerging therapy for benign prostatic hyperplasia (BPH). Optimal patient selection is an important step when introducing new treatments and several characteristics associated with a good clinical outcome has previously been proposed. However, no prognostic tool is yet available for PAE. Computed tomography perfusion is an imaging technique that provides hemodynamic parameters making it possible to estimate the prostatic blood flow (PBF). This study investigated the relationship between PBF and the response to PAE. A post hoc analysis including prostate-specific antigen (PSA) measurements before and 24-h after embolization from two prospective studies on sixteen patients undergoing PAE with BPH or prostate cancer were performed. The primary outcome was the correlation between baseline PBF and the change in PSA as a surrogate measure of treatment response. Prostate volume strongly correlated with treatment response and the response was greater with incremental amounts of injected embolic material. PBF was not associated with elevation in PSA and added no information that could guide patient selection.
Collapse
Affiliation(s)
- Brian Malling
- Department of Diagnostic Radiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (B.M.); (C.L.); (L.L.)
| | - Martin Andreas Røder
- Department of Urology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Correspondence:
| | - Carsten Lauridsen
- Department of Diagnostic Radiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (B.M.); (C.L.); (L.L.)
- Bachelor’s Degree Programme in Radiogeltraphy, Copenhagen University College, Sigurdsgade 26, 2200 Copenhagen, Denmark
| | - Lars Lönn
- Department of Diagnostic Radiology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark; (B.M.); (C.L.); (L.L.)
| |
Collapse
|
29
|
Can Dynamic Contrast-Enhanced CT Quantify Perfusion in a Stimulated Muscle of Limited Size? A Rat Model. Clin Orthop Relat Res 2020; 478:179-188. [PMID: 31794491 PMCID: PMC7000042 DOI: 10.1097/corr.0000000000001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Muscle injury may result in damage to the vasculature, rendering it unable to meet the metabolic demands of muscle regeneration and healing. Therefore, therapies frequently aim to maintain, restore, or improve blood supply to the injured muscle. Although there are several options to assess the vascular outcomes of these therapies, few are capable of spatially assessing perfusion in large volumes of tissue. QUESTIONS/PURPOSES Can dynamic contrast-enhanced CT (DCE-CT) imaging acquired with a clinical CT scanner be used in a rat model to quantify perfusion in the anterior tibialis muscle at spatially relevant volumes, as assessed by (1) the blood flow rate and tissue blood volume in the muscle after three levels of muscle stimulation (low, medium, and maximum) relative to baseline as determined by the non-stimulated contralateral leg; and (2) how do these measurements compare with those obtained by the more standard approach of microsphere perfusion? METHODS The right anterior tibialis muscles of adult male Sprague Dawley rats were randomized to low- (n = 10), medium- (n = 6), or maximum- (n = 3) level (duty cycles of 2.5%, 5.0%, and 20%, respectively) nerve electrode coupled muscle stimulation directly followed by DCE-CT imaging. Tissue blood flow and blood volume maps were created using commercial software and volumetrically measured using NIH software. Although differences in blood flow were detectable across the studied levels of muscle stimulation, a review of the evidence suggested the absolute blood flow quantified was underestimated. Therefore, at a later date, a separate set of adult male Sprague Dawley rats were randomized for microsphere perfusion (n = 7) to define blood flow in the animal model with an accepted standard. With this technique, intra-arterial particles sized to freely flow in blood but large enough to lodge in tissue capillaries were injected. Simultaneously, blood sampling at a fixed flow rate was simultaneously performed to provide a fixed blood flow rate sample. The tissues of interest were then explanted and assessed for the total number of particles per tissue volume. Tissue blood flow rate was then calculated based on the particle count ratio within the reference sample. Note that a tissue's blood volume cannot be calculated with this method. Comparison analysis to the non-stimulated baseline leg was performed using two-tailed paired student t-test. An ANOVA was used to compare difference between stimulation groups. RESULTS DCE-CT measured (mean ± SD) increasing tissue blood flow differences in stimulated anterior tibialis muscle at 2.5% duty cycle (32 ± 5 cc/100 cc/min), 5.0% duty cycle (46 ± 13 cc/100 cc/min), and 20% duty cycle (73 ± 3 cc/100 cc/min) compared with the paired contralateral non-stimulated anterior tibialis muscle (10 ± 2 cc/100 cc/min, mean difference 21 cc/100 cc/min [95% CI 17.08 to 25.69]; 9 ± 1 cc/100 cc/min, mean difference 37 cc/100 cc/min [95% CI 23.06 to 50.11]; and 11 ± 2 cc/100 cc/min, mean difference 62 cc/100 cc/min [95% CI 53.67 to 70.03]; all p < 0.001). Similarly, DCE-CT showed increasing differences in tissue blood volumes within the stimulated anterior tibialis muscle at 2.5% duty cycle (23.2 ± 4.2 cc/100 cc), 5.0% duty cycle (39.2 ± 7.2 cc/100 cc), and 20% duty cycle (52.5 ± 13.1 cc/100 cc) compared with the paired contralateral non-stimulated anterior tibialis muscle (3.4 ± 0.7 cc/100 cc, mean difference 19.8 cc/100 cc [95% CI 16.46 to 23.20]; p < 0.001; 3.5 ± 0.4 cc/100 cc, mean difference 35.7 cc/100 cc [95% CI 28.44 to 43.00]; p < 0.001; and 4.2 ± 1.3 cc/100 cc, mean difference 48.3 cc/100 cc [95% CI 17.86 to 78.77]; p = 0.010). Microsphere perfusion measurements also showed an increasing difference in tissue blood flow in the stimulated anterior tibialis muscle at 2.5% duty cycle (62 ± 43 cc/100 cc/min), 5.0% duty cycle (89 ± 52 cc/100 cc/min), and 20% duty cycle (313 ± 269 cc/100 cc/min) compared with the paired contralateral non-stimulated anterior tibialis muscle (8 ± 4 cc/100 cc/min, mean difference 55 cc/100 cc/min [95% CI 15.49 to 94.24]; p = 0.007; 9 ± 9 cc/100 cc/min, mean difference 79 cc/100 cc/min [95% CI 33.83 to 125.09]; p = 0.003; and 18 ± 18 cc/100 cc/min, mean difference 295 cc/100 cc/min [95% CI 8.45 to 580.87]; p = 0.023). Qualitative comparison between the methods suggests that DCE-CT values underestimate tissue blood flow with a post-hoc ANOVA showing DCE-CT blood flow values within the 2.5% duty cycle group (32 ± 5 cc/100 cc/min) to be less than the microsphere perfusion value (62 ± 43 cc/100 cc/min) with a mean difference of 31 cc/100 cc/min (95% CI 2.46 to 60.23; p = 0.035). CONCLUSIONS DCE-CT using a clinical scanner is a feasible modality to measure incremental changes of blood flow and tissue blood volume within a spatially challenged small animal model. Care should be taken in studies where true blood flow values are needed, as this particular small-volume muscle model suggests true blood flow is underestimated using the specific adaptions of DCE-CT acquisition and image processing chosen. CLINICAL RELEVANCE CT perfusion is a clinically available modality allowing for translation of science from bench to bedside. Adapting the modality to fit small animal models that are relevant to muscle healing may hasten time to clinical utility.
Collapse
|
30
|
Low-Dose Perfusion Computed Tomography for Breast Cancer to Quantify Tumor Vascularity: Correlation With Prognostic Biomarkers. Invest Radiol 2019; 54:273-281. [PMID: 30570503 DOI: 10.1097/rli.0000000000000538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the feasibility of using low-dose perfusion computed tomography (CT) in breast cancers for quantification of tumor vascularity and to correlate perfusion indexes with prognostic biomarkers. MATERIALS AND METHODS This preliminary study was approved by our institutional review board. Signed informed consent was obtained from all 70 enrolled patients with invasive breast cancers. Low-dose perfusion CT was performed with the patient in the prone position using a spectral CT device set at 80 kVp and 30 mAs (1.30-1.40 mSv). Images were analyzed using commercial software applying the maximum slope algorithm. On CT perfusion maps, perfusion (mL/min per 100 mL), blood volume (mL/100 g), time-to-peak enhancement (second), and peak enhancement intensity (HU) were measured in the tumor, normal breast glandular tissues, and fat. Tumor grade, estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), and Ki67 level were evaluated using histopathology. Statistically, CT perfusion indexes of the tumor and normal glandular tissues or fat were compared using the Wilcoxon signed-rank test, and CT indexes were correlated with histological characteristics using the Mann-Whitney U or Kruskal-Wallis tests. We also correlated CT indexes with magnetic resonance imaging enhancement characteristics. RESULTS In breast cancers, perfusion, blood volume, and peak enhancement intensity values were significantly higher, and time to peak was shorter than in normal glandular tissues and fat (P < 0.001). Perfusion increased significantly in high-grade, ER-, or HER2+ cancers (P < 0.05). Time to peak decreased in ER-, HER2+, and high-grade cancers or in those with high Ki67 levels (P < 0.05). Peak enhancement intensity significantly increased in high-grade cancers (P < 0.05). HER2 overexpressing cancers showed significantly higher perfusion and shorter time to peak than luminal-type cancers (P < 0.05). Perfusion increased and time to peak decreased significantly in cancers with washout enhancement patterns on magnetic resonance imaging. CONCLUSIONS Low-dose perfusion CT in the prone position is feasible to quantify tumor vascularity in breast cancers, and CT perfusion indexes are significantly correlated with prognostic biomarkers and molecular subtypes of breast cancer.
Collapse
|
31
|
Ippolito D, Pecorelli A, Querques G, Drago SG, Maino C, Franzesi CT, Hatzidakis A, Sironi S. Dynamic Computed Tomography Perfusion Imaging: Complementary Diagnostic Tool in Hepatocellular Carcinoma Assessment From Diagnosis to Treatment Follow-up. Acad Radiol 2019; 26:1675-1685. [PMID: 30852079 DOI: 10.1016/j.acra.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 02/05/2023]
Abstract
Early diagnosis of HCC is of paramount importance in order to enable the application of curative treatments. Among these, radiofrequency ablation (RFA) is actually considered the most effective ablative therapy for early stage hepatocellular carcinoma (HCC) not suitable for surgery. On the other hand, transarterial chemoembolization (TACE) represents the standard of care for intermediate stage HCC and compensated liver function. Finally, sorafenib, an oral antiangiogenic targeted drug, is the only approved systemic therapy for advanced HCC with vascular invasion, extrahepatic spread, and well-preserved liver function. Beside traditional radiological techniques, new functional imaging tools have been introduced in order to provide not only morphological information but also quantitative functional data. In this review, we analyze perfusion-CT (pCT) from a technical point of view, describing the main different mathematical analytical models for the quantification of tissue perfusion from acquired CT raw data, the most commonly acquired perfusion parameters, and the technical parameters required to perform a standard pCT examination. Moreover, a systematic review of the literature was performed to assess the role of pCT as an emerging imaging biomarker for HCC diagnosis, response evaluation to RFA, TACE, and sorafenib, and we examine its challenges in HCC management.
Collapse
Affiliation(s)
- Davide Ippolito
- University of Milano-Bicocca, Milan, Italy; Department of Diagnostic Radiology, San Gerardo Hospital, Via Pergolesi 33 - 20900 Monza, Italy
| | - Anna Pecorelli
- University of Milano-Bicocca, Milan, Italy; Department of Diagnostic Radiology, San Gerardo Hospital, Via Pergolesi 33 - 20900 Monza, Italy.
| | - Giulia Querques
- University of Milano-Bicocca, Milan, Italy; Department of Diagnostic Radiology, San Gerardo Hospital, Via Pergolesi 33 - 20900 Monza, Italy
| | - Silvia Girolama Drago
- University of Milano-Bicocca, Milan, Italy; Department of Diagnostic Radiology, San Gerardo Hospital, Via Pergolesi 33 - 20900 Monza, Italy
| | - Cesare Maino
- University of Milano-Bicocca, Milan, Italy; Department of Diagnostic Radiology, San Gerardo Hospital, Via Pergolesi 33 - 20900 Monza, Italy
| | - Cammillo Talei Franzesi
- University of Milano-Bicocca, Milan, Italy; Department of Diagnostic Radiology, San Gerardo Hospital, Via Pergolesi 33 - 20900 Monza, Italy
| | - Adam Hatzidakis
- Department of Medical Imaging, University Hospital of Heraklion, Greece
| | - Sandro Sironi
- University of Milano-Bicocca, Milan, Italy; Department of Diagnostic Radiology, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
32
|
Machine Learning Approaches to Radiogenomics of Breast Cancer using Low-Dose Perfusion Computed Tomography: Predicting Prognostic Biomarkers and Molecular Subtypes. Sci Rep 2019; 9:17847. [PMID: 31780739 PMCID: PMC6882909 DOI: 10.1038/s41598-019-54371-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/14/2019] [Indexed: 01/30/2023] Open
Abstract
Radiogenomics investigates the relationship between imaging phenotypes and genetic expression. Breast cancer is a heterogeneous disease that manifests complex genetic changes and various prognosis and treatment response. We investigate the value of machine learning approaches to radiogenomics using low-dose perfusion computed tomography (CT) to predict prognostic biomarkers and molecular subtypes of invasive breast cancer. This prospective study enrolled a total of 723 cases involving 241 patients with invasive breast cancer. The 18 CT parameters of cancers were analyzed using 5 machine learning models to predict lymph node status, tumor grade, tumor size, hormone receptors, HER2, Ki67, and the molecular subtypes. The random forest model was the best model in terms of accuracy and the area under the receiver-operating characteristic curve (AUC). On average, the random forest model had 13% higher accuracy and 0.17 higher AUC than the logistic regression. The most important CT parameters in the random forest model for prediction were peak enhancement intensity (Hounsfield units), time to peak (seconds), blood volume permeability (mL/100 g), and perfusion of tumor (mL/min per 100 mL). Machine learning approaches to radiogenomics using low-dose perfusion breast CT is a useful noninvasive tool for predicting prognostic biomarkers and molecular subtypes of invasive breast cancer.
Collapse
|
33
|
Dynamic Quantitative Iodine Myocardial Perfusion Imaging with Dual-Layer CT using a Porcine Model. Sci Rep 2019; 9:16046. [PMID: 31690759 PMCID: PMC6831609 DOI: 10.1038/s41598-019-52458-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/16/2019] [Indexed: 01/09/2023] Open
Abstract
Ischemic heart disease is the globally leading cause of death. When using coronary CT angiography, the functional hemodynamics within the myocardium remain uncertain. In this study myocardial CT perfusion imaging using iodine contrast agent demonstrated to strongly improve the assessment of myocardial disorders. However, a retrieval of such dynamics using Hounsfield units from conventional CT poses concerns with respect to beam-hardening effects and low contrast-to-noise ratio (CNR). Dual-energy CT offers novel approaches to overcome aforementioned limitations. Quantitative peak enhancement, perfusion, time to peak and iodine volume measurements inside the myocardium were determined resulting in 0.92 mg/ml, 0.085 mg/ml/s 17.12 s and 29.89 mg/ml*s, respectively. We report on the first extensive quantitative and iodine-based analysis of myocardial dynamics in a healthy porcine model using a dual-layer spectral CT. We further elucidate on the potential of reducing the radiation dose from 135 to 18 mGy and the contrast agent volume from 60 to 30 mL by presenting a two-shot acquisition approach and measuring iodine concentrations in the myocardium in-vivo down to 1 mg/ml, respectively. We believe that dynamic quantitative iodine perfusion imaging may be a highly sensitive tool for the precise functional assessment and monitoring of early myocardial ischemia.
Collapse
|
34
|
Skornitzke S, Kauczor HU, Stiller W. Measuring Dynamic CT Perfusion Based on Time-Resolved Quantitative DECT Iodine Maps: Comparison to Conventional Perfusion at 80 kVp for Pancreatic Carcinoma. Invest Radiol 2019; 54:689-696. [PMID: 31335633 DOI: 10.1097/rli.0000000000000591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Using dual-energy computed tomography (DECT) for quantifying iodine content after injection of contrast agent could provide a quantitative basis for dynamic computed tomography (CT) perfusion measurements by means of established mathematical models of contrast agent kinetics, thus improving results by combining the strength of both techniques, which was investigated in this study. MATERIALS AND METHODS A dynamic DECT acquisition over 51 seconds performed at 80/Sn140 kVp in 17 patients with pancreatic carcinoma was used to calculate iodine-enhancement images for each time point by means of 3-material decomposition. After motion correction, perfusion maps of blood flow were calculated using the maximum-slope model from both 80 kVp image data and iodine-enhancement images. Blood flow was measured in regions of interest placed in healthy pancreatic tissue and carcinoma for both of the derived perfusion maps. To assess image quality of input data, an adjusted contrast-to-noise ratio was calculated for 80 kVp images and iodine-enhancement images. Susceptibility of perfusion results to residual patient breathing motion during acquisition was investigated by measuring blood flow in fatty tissue surrounding the pancreas, where blood flow should be negligible compared with the pancreas. RESULTS For both 80 kVp and iodine-enhancement images, blood flow was significantly higher in healthy tissue (114.2 ± 37.4 mL/100 mL/min or 115.1 ± 36.2 mL/100 mL/min, respectively) than in carcinoma (46.5 ± 26.6 mL/100 mL/min or 49.7 ± 24.7 mL/100 mL/min, respectively). Differences in blood flow between 80 kVp image data and iodine-enhancement images were statistically significant in healthy tissue, but not in carcinoma. For 80 kVp images, adjusted contrast-to-noise ratio was significantly higher (1.3 ± 1.1) than for iodine-enhancement images (1.1 ± 0.9). When evaluating fatty tissue surrounding the pancreas for estimating influence of patient motion, measured blood flow was significantly lower for iodine-enhancement images (30.7 ± 12.0 mL/100 mL/min) than for 80 kVp images (39.0 ± 19.1 mL/100 mL/min). Average patient radiation exposure was 8.01 mSv for dynamic DECT acquisition, compared with 4.60 mSv for dynamic 80 kVp acquisition. DISCUSSION Iodine enhancement images can be used to calculate CT perfusion maps of blood flow, and compared with 80 kVp images, results showed only a small difference of 1 mL/100 mL/min in blood flow in healthy tissue, whereas patient radiation exposure was increased for dynamic DECT. Perfusion maps calculated based on iodine-enhancement images showed lower blood flow in fatty tissues surrounding the pancreas, indicating reduced susceptibility to residual patient breathing motion during the acquisition.
Collapse
Affiliation(s)
- Stephan Skornitzke
- From the Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | | |
Collapse
|
35
|
Sah BR, Veit-Haibach P, Strobel K, Banyai M, Huellner MW. CT-perfusion in peripheral arterial disease - Correlation with angiographic and hemodynamic parameters. PLoS One 2019; 14:e0223066. [PMID: 31560706 PMCID: PMC6764684 DOI: 10.1371/journal.pone.0223066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Objective The purpose of this study was the assessment of volumetric CT-perfusion (CTP) of the lower leg musculature in patients with symptomatic peripheral arterial disease (PAD) of the lower extremities, comparing it with established angiographic and hemodynamic parameters. Materials and methods Thirty-five consecutive patients with symptomatic PAD of the lower extremities requiring interventional revascularization were assessed prospectively. All patients underwent a CTP scan of the lower leg, and hemodynamic and angiographic assessment. Hemodynamic parameters, specifically ankle-brachial pressure index (ABI), ankle blood pressure (ABP), peak systolic velocity (PSV), and segmental pulse oscillography (SPO) level, were determined. Lesion length and degree of collateralization were assessed by interventional angiography. CTP parameters were calculated with a perfusion software, acting on a no outflow assumption. A sequential two-compartment model was used. Differences in CTP parameters and correlations between CTP, hemodynamic and angiographic parameters were assessed with non-parametric tests. Results The cohort consisted of 27 subjects with an occlusion, and eight with a high-grade stenosis. The mean blood flow (BF) was 7.71 ± 2.96 ml/100ml*min-1, mean blood volume (BV) 0.71 ± 0.33 ml/100ml, and mean mean transit time (MTT) 7.22 ± 2.66 s. BF and BV were higher in subjects with longer lesions, and BV was higher in subjects with lower ABI. Significant correlations were found between lesion length and BV (r = 0.65) and BF (r = 0.52). Significant inverse correlations were found between BV and ABI and between BV and ABP (r = -0.56, for both correlations). Conclusions In our study, we have shown the feasibility of CTP for the assessment of PAD. In the future, this quantitative method might serve as a non-invasive method, possibly complementing the diagnostic workup of patients with peripheral arterial disease.
Collapse
Affiliation(s)
- Bert-Ram Sah
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital, University of Bern, Bern, Switzerland
- Department of Cancer Imaging, King’s College London, London, England, United Kingdom
- * E-mail:
| | - Patrick Veit-Haibach
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- Department of Radiology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
- Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Klaus Strobel
- Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Martin Banyai
- Department of Internal Medicine, Subdivision of Angiology, Lucerne Cantonal Hospital, Lucerne, Switzerland
- Clinic for Angiology, University Hospital Zurich, Zurich, Switzerland
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, Lucerne, Switzerland
| |
Collapse
|
36
|
Li K, Chen GH. Statistical properties of cerebral CT perfusion imaging systems. Part II. Deconvolution-based systems. Med Phys 2019; 46:4881-4897. [PMID: 31495935 DOI: 10.1002/mp.13805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The purpose of this work was to develop a theoretical framework to pinpoint the quantitative relationship between input parameters of deconvolution-based cerebral computed tomography perfusion (CTP) imaging systems and statistical properties of the output perfusion maps. METHODS Deconvolution-based CTP systems assume that the arterial input function, tissue enhancement curve, and flow-scaled residue function k(t) are related to each other through a convolution model, and thus by reversing the convolution operation, k(t) and the associated perfusion parameters can be estimated. The theoretical analysis started by deriving analytical formulas for the expected value and autocovariance of the residue function estimated using the singular value decomposition-based deconvolution method. Next, it analyzed statistical properties of the "max" and "arg max" operators, based on which the signal and noise properties of cerebral blood flow (CBF) and time-to-max ( t max ) are quantitatively related to the statistical model of the estimated residue function [ k * ( t ) ] and system parameters. To validate the theory, CTP images of a digital head phantom were simulated, from which signal and noise of each perfusion parameter were measured and compared with values calculated using the theoretical model. In addition, an in vivo canine experiment was performed to validate the noise model of cerebral blood volume (CBV). RESULTS For the numerical study, the relative root mean squared error between the measured and theoretically calculated value is ≤0.21% for the autocovariance matrix of k * ( t ) , and is ≤0.13% for the expected form of k * ( t ) . A Bland-Altman analysis demonstrated no significant difference between measured and theoretical values for the mean or noise of each perfusion parameter. For the animal study, the theoretical CBV noise fell within the 25th and 75th percentiles of the experimental values. To provide an example of the theory's utility, an expansion of the CBV noise formula was performed to unveil the dominant role of the baseline image noise in deconvolution-based CBV. Correspondingly, data of the three canine subjects used in the Part I paper were retrospectively processed to confirm that preferentially partitioning dose to the baseline frames benefits both nondeconvolution- and deconvolution-based CBV maps. CONCLUSIONS Quantitative relationships between the statistical properties of deconvolution-based CTP maps, source image acquisition and reconstruction parameters, contrast injection protocol, and deconvolution parameters are established.
Collapse
Affiliation(s)
- Ke Li
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Guang-Hong Chen
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| |
Collapse
|
37
|
Can Disturbed Liver Perfusion Revealed in p-CT on the First Day of Acute Pancreatitis Provide Information about the Expected Severity of the Disease? Gastroenterol Res Pract 2019; 2019:6590729. [PMID: 31485219 PMCID: PMC6710743 DOI: 10.1155/2019/6590729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/24/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
Background The aim of the study was to evaluate the prognostic properties of perfusion parameters of liver parenchyma based on computed tomography (CT) of patients with acute pancreatitis (AP) made on the first day of onset of symptoms, to assess their usefulness in identifying patients with increased risk of the development of severe AP. Methods 79 patients with clinical symptoms and biochemical criteria indicative of AP underwent perfusion computed tomography (p-CT) within 24 hours after onset of the symptoms. Perfusion parameters in 41 people who developed a severe form of AP were compared with parameters in 38 patients in whom the course of AP was mild. Results Statistical differences in the liver perfusion parameters between the group of patients with mild and severe AP were shown. The permeability-surface area product was significantly lower, and the hepatic arterial fraction was significantly higher in the group of patients with progression of AP. Conclusions Based on the results, it seems that p-CT performed on the first day from the onset of AP is a method that, by revealing disturbances in hepatic perfusion, can help in identifying patients with increased risk of the development of severe AP.
Collapse
|
38
|
Patchana T, Dorkoski R, Zampella B, Wiginton JG, Sweiss RB, Menoni R, Miulli DE. The Use of Computed Tomography Perfusion on Admission to Predict Outcomes in Surgical and Nonsurgical Traumatic Brain Injury Patients. Cureus 2019; 11:e5077. [PMID: 31516787 PMCID: PMC6721926 DOI: 10.7759/cureus.5077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Introduction: The objective of this study was to investigate if data obtained from a computed tomography (CT) perfusion study on admission could correlate to outcomes for the patient, including the patient’s length of stay in the hospital and their initial and final Glasgow Coma Scale (GCS), as well as the modified Rankin Scale (mRS) on discharge. We present an initial subset of patients fulfilling the inclusion criteria: over the age of 18 with mild, moderate, or severe traumatic brain injury (TBI). Patients admitted with a diagnosis of TBI had CT perfusion studies performed within 48 hours of admission. GCS, length of stay, mRS, and discharge location were tracked, along with the patient’s course of hospitalization. Initial results and discussion on the utility of CT perfusion for predicting outcomes are presented. Methods: Patients exhibiting mild, moderate, or severe TBI were assessed using CT perfusion within 48 hours of admission from January to July 2019 at the Arrowhead Regional Medical Center (ARMC). The neurosurgery census and patient records were assessed for progression of outcomes. Data obtained from the perfusion scans were correlated to patient outcomes to evaluate the utility of CT perfusion in predicting outcomes in surgical and nonsurgical TBI patients. Results: Preliminary data were obtained on six patients exhibiting TBI, ranging from mild to severe. The mean GCS of our patient cohort on admission was eight, with the most common mechanism of injury found to be falls (50%) and motor vehicle accidents (50%). Cerebral blood volume (CBV) seemed to increase with Rankin value (Pearson's correlations coefficient = 0.43 but was statistically insignificant (P = 0.21)). Cerebral blood flow (CBF) was found to be correlated with CBV, and both increased with Rankin score (Pearson's correlation coefficient = 0.56) but were statistically insignificant (P = 0.27). These results suggest that with a larger sample size, CBV and CBF may be correlated to patient outcome. Conclusion: Although more data is needed, preliminary results suggest that with larger patient populations, CT perfusion may provide information that can be correlated clinically to patient outcomes. This study shows that CBF and CBV may serve as useful indicators for prognostication of TBI patients.
Collapse
Affiliation(s)
- Tye Patchana
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Ryan Dorkoski
- Environmental and Plant Science, Ohio University, Athens, USA
| | - Bailey Zampella
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - James G Wiginton
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Raed B Sweiss
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Rosalinda Menoni
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Dan E Miulli
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| |
Collapse
|
39
|
Volume Computed Tomography Perfusion Imaging: Evaluation of the Significance in Oncologic Follow-up of Metastasizing Renal Cell Carcinoma in the Early Period of Targeted Therapy - Preliminary Results. J Comput Assist Tomogr 2019; 43:493-498. [PMID: 30762651 DOI: 10.1097/rct.0000000000000848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The aim of this study was to assess the significance of volume computed tomography perfusion imaging of metastasizing renal cell carcinoma (mRCC) in the early period after the initiation of targeted therapy. METHODS Blood flow (BF), blood volume, and clearance (CL) were calculated in 10 patients with histologically verified mRCC before and 1 month after initiation of targeted therapy using compartmental analysis algorithms. In addition, the longest diameter of tumor was measured for both time points and compared. Correlation test was performed between perfusion parameters and size changes with time to progression (TTP). RESULTS Blood flow and CL were significantly lower after therapy initiation, whereas blood volume and the long diameter remained unchanged. Median values before and after 4 weeks of therapy were 144.2 versus 99.4 mL/min/100 mL for BF (P = 0.009) and 115.5 versus 46.8 mL/min/100 mL for CL (P = 0.007). Changes in BF and CL showed very strong negative correlation with TTP (r = -0.838, P = 0.009 and r = -0.826, P = 0.011, respectively). CONCLUSIONS Our preliminary study results indicate that volume computed tomography perfusion may assess targeted therapy response of mRCC earlier than the currently used Response Evaluation Criteria in Solid Tumors. In addition, changes in BF and CL may be a promising parameter for prediction of TTP.
Collapse
|
40
|
Computed Tomography Perfusion Measurements in Renal Lesions Obtained by Bayesian Estimation, Advanced Singular-Value Decomposition Deconvolution, Maximum Slope, and Patlak Models: Intermodel Agreement and Diagnostic Accuracy of Tumor Classification. Invest Radiol 2019; 53:477-485. [PMID: 29762256 DOI: 10.1097/rli.0000000000000477] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The aims of this study were to evaluate the agreement of computed tomography (CT)-perfusion parameter values of the normal renal cortex and various renal tumors, which were obtained by different mathematical models, and to evaluate their diagnostic accuracy. MATERIALS AND METHODS Perfusion imaging was performed prospectively in 35 patients to analyze 144 regions of interest of the normal renal cortex and 144 regions of interest of renal tumors, including 21 clear-cell renal cell carcinomas (RCC), 6 papillary RCCs, 5 oncocytomas, 1 chromophobe RCC, 1 angiomyolipoma with minimal fat, and 1 tubulocystic RCC. Identical source data were postprocessed and analyzed on 2 commercial software applications with the following implemented mathematical models: maximum slope, Patlak plot, standard singular-value decomposition (SVD), block-circulant SVD, oscillation-limited block-circulant SVD, and Bayesian estimation technique. Results for blood flow (BF), blood volume (BV), and mean transit time (MTT) were recorded. Agreement and correlation between pairs of models and perfusion parameters were assessed. Diagnostic accuracy was evaluated by receiver operating characteristic (ROC) analysis. RESULTS Significant differences and poor agreement of BF, BV, and MTT values were noted for most of model comparisons in both the normal renal cortex and different renal tumors. The correlations between most model pairs and perfusion parameters ranged between good and perfect (Spearman ρ = 0.79-1.00), except for BV values obtained by Patlak method (ρ = 0.61-0.72). All mathematical models computed BF and BV values, which differed significantly between clear cell RCCs, papillary RCCs, and oncocytomas, which introduces them as useful diagnostic tests to differentiate between different histologic subgroups (areas under ROC curve, 0.83-0.99). The diagnostic accuracy to discriminate between clear-cell RCCs and the renal cortex was the lowest based on the Patlak plot model (area under ROC curve, 0.76); BF and BV values obtained by other algorithms did not differ significantly in their diagnostic accuracy. CONCLUSIONS Quantitative perfusion parameters obtained from different mathematical models cannot be used interchangeably. Based on BF and BV estimates, all models are a useful tool in the differential diagnosis of kidney tumors, with the Patlak plot model yielding a significantly lower diagnostic accuracy.
Collapse
|
41
|
Lee DH, Kim SH, Lee SM, Han JK. Prediction of Treatment Outcome of Chemotherapy Using Perfusion Computed Tomography in Patients with Unresectable Advanced Gastric Cancer. Korean J Radiol 2019; 20:589-598. [PMID: 30887741 PMCID: PMC6424833 DOI: 10.3348/kjr.2018.0306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Objective To evaluate whether data acquired from perfusion computed tomography (PCT) parameters can aid in the prediction of treatment outcome after palliative chemotherapy in patients with unresectable advanced gastric cancer (AGC). Materials and Methods Twenty-one patients with unresectable AGCs, who underwent both PCT and palliative chemotherapy, were prospectively included. Treatment response was assessed according to Response Evaluation Criteria in Solid Tumors version 1.1 (i.e., patients who achieved complete or partial response were classified as responders). The relationship between tumor response and PCT parameters was evaluated using the Mann-Whitney test and receiver operating characteristic analysis. One-year survival was estimated using the Kaplan-Meier method. Results After chemotherapy, six patients exhibited partial response and were allocated to the responder group while the remaining 15 patients were allocated to the non-responder group. Permeability surface (PS) value was shown to be significantly different between the responder and non-responder groups (51.0 mL/100 g/min vs. 23.4 mL/100 g/min, respectively; p = 0.002), whereas other PCT parameters did not demonstrate a significant difference. The area under the curve for prediction in responders was 0.911 (p = 0.004) for PS value, with a sensitivity of 100% (6/6) and specificity of 80% (12/15) at a cut-off value of 29.7 mL/100 g/min. One-year survival in nine patients with PS value > 29.7 mL/100 g/min was 66.7%, which was significantly higher than that in the 12 patients (33.3%) with PS value ≤ 29.7 mL/100 g/min (p = 0.019). Conclusion Perfusion parameter data acquired from PCT demonstrated predictive value for treatment outcome after palliative chemotherapy, reflected by the significantly higher PS value in the responder group compared with the non-responder group.
Collapse
Affiliation(s)
- Dong Ho Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Se Hyung Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
| | - Sang Min Lee
- Department of Radiology, Hallym University Sacred Heart Hospital, Seoul, Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
42
|
Lee D, Park S, Ang MJC, Park JG, Yoon S, Kim C, Lee SK, Cho KO, Choi J. Evaluation of liver lesions by use of shear wave elastography and computed tomography perfusion imaging after radiofrequency ablation in clinically normal dogs. Am J Vet Res 2019; 79:1140-1149. [PMID: 30372151 DOI: 10.2460/ajvr.79.11.1140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate acute changes of the liver by use of shear wave elastography (SWE) and CT perfusion after radiofrequency ablation (RFA). ANIMALS 7 healthy Beagles. PROCEDURES RFA was performed on the liver (day 0). Stiffness of the ablation lesion, transitional zone, and normal parenchyma were evaluated by use of SWE, and blood flow, blood volume, and arterial liver perfusion of those regions were evaluated by use of CT perfusion on days 0 and 4. All RFA lesions were histologically examined on day 4. RESULTS Examination of the SWE color-coded map distinctly revealed stiffness of the liver tissue, which increased from the normal parenchyma to the transitional zone and then to the ablation zone. For CT perfusion, blood flow, blood volume, and arterial liver perfusion decreased from the transitional zone to the normal parenchyma and then to the ablation zone. Tissue stiffness and CT perfusion variables did not differ significantly between days 0 and 4. Histologic examination revealed central diffuse necrosis and peripheral hyperemia with infiltration of lymphoid cells and macrophages. CONCLUSIONS AND CLINICAL RELEVANCE Coagulation necrosis induced a loss of blood perfusion and caused tissue hardening (stiffness) in the ablation zone. Hyperemic and inflammatory changes of the transitional zone resulted in increased blood perfusion. Acute changes in stiffness and perfusion of liver tissue after RFA could be determined by use of SWE and CT perfusion. These results can be used to predict the clinical efficacy of RFA and to support further studies, including those involving hepatic neoplasia.
Collapse
|
43
|
Zhang S, Zeng D, Niu S, Zhang H, Xu H, Li S, Qiu S, Ma J. High-fidelity image deconvolution for low-dose cerebral perfusion CT imaging via low-rank and total variation regularizations. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.09.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Skornitzke S, Hirsch J, Kauczor HU, Stiller W. Evaluation of the effect of image noise on CT perfusion measurements using digital perfusion phantoms. Eur Radiol 2018; 29:2089-2097. [PMID: 30311031 DOI: 10.1007/s00330-018-5709-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To assess the influence of image noise on computed tomography (CT) perfusion studies, CT perfusion software algorithms were evaluated for susceptibility to image noise and results applied to clinical perfusion studies. METHODS Digital perfusion phantoms were generated using a published deconvolution model to create time-attenuation curves (TACs) for 16 different combinations of blood flow (BF; 30/60/90/120 ml/100 ml/min) and flow extraction product (FEP; 10/20/30/40 ml/100 ml/min) corresponding to values encountered in clinical studies. TACs were distorted with Gaussian noise at 50 different strengths to approximate image noise, performing 200 repetitions for each noise level. A total of 160,000 TACs were evaluated by measuring BF and FEP with CT perfusion software, comparing results for the maximum slope and Patlak models with those obtained with a deconvolution model. To translate results to clinical practice, data of 23 patients from a CT perfusion study were assessed for image noise, and the accuracy of reported CT perfusion measurements was estimated. RESULTS Perfusion measurements depend on image noise as means and standard deviations of BF and FEP over repetitions increase with increasing image noise, especially for low BF and FEP values. BF measurements derived by deconvolution show larger standard deviations than those performed with the maximum slope model. Image noise in the evaluated CT perfusion study was 26.46 ± 3.52 HU, indicating possible overestimation of BF by up to 85% in a clinical setting. CONCLUSIONS Measurements of perfusion parameters depend heavily upon the magnitude of image noise, which has to be taken into account during selection of acquisition parameters and interpretation of results, e.g., as a quantitative imaging biomarker. KEY POINTS • CT perfusion results depend heavily upon the magnitude of image noise. • Different CT perfusion models react differently to the presence of image noise. • Blood flow may be overestimated by 85% in clinical CT perfusion studies.
Collapse
Affiliation(s)
- Stephan Skornitzke
- Diagnostic & Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Jessica Hirsch
- CHRESTOS Institut, Emil-Figge-Straße 43, 44227, Dortmund, Germany
| | - Hans-Ulrich Kauczor
- Diagnostic & Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Wolfram Stiller
- Diagnostic & Interventional Radiology (DIR), Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
45
|
Singla V, Prabhakar N, Khandelwal N, Sharma G, Singh T, Aggarwal N, Radhika S. Role of perfusion CT in the evaluation of adnexal masses. J OBSTET GYNAECOL 2018; 39:218-223. [PMID: 30257605 DOI: 10.1080/01443615.2018.1479382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The objective of this study was to evaluate the role of perfusion computed tomography (PCT) in differentiating benign from malignant adnexal masses. Twenty patients, each of pathologically proven malignant and benign adnexal masses who had undergone PCT on 64-slice CT scanner, were included in the study. The PCT parameters, viz. blood volume (BV), blood flow (BF), permeability surface index area (PS) and time to maximum of the tissue residue function (Tmax) of the adnexal masses were calculated. Statistical analysis to study the association between PCT parameters and histopathological diagnosis was done. In the malignant group, the mean PS, BV and BF values were elevated. The mean Tmax of the benign lesions was higher compared to that of the malignant lesions. There was a significant statistical difference in the PCT parameters between the malignant and benign groups (p value = .001). PCT can be a useful tool for differentiating benign and malignant adnexal masses. Impact statement What is already known on this subject? It is not always possible to distinguish benign from malignant adnexal lesions despite the application of various imaging techniques. Perfusion CT (PCT) is an imaging technique with which we can obtain both the morphological and functional information of tumours. Perfusion-based imaging enables us to objectively evaluate the neovascularity in a lesion. This helps in differentiating the benign lesions from aggressive malignant lesions. What do the results of this study add? The PCT parameters, viz. blood volume (BV), blood flow (BF), permeability surface index area (PS) and time to maximum of the tissue residue function (Tmax) were calculated from adnexal masses on a 64-multi-slice CT scanner and correlated with their histopathological diagnoses. The values of the mean PS, BV and BF values were significantly higher in the malignant adnexal masses. The mean Tmax in the benign masses was more compared to that of the malignant lesions. Significant statistical difference was seen in PCT parameters between malignant and benign groups. What are the implications of these findings for clinical practice and/or further research? PCT can be a useful tool for differentiating benign from malignant adnexal masses. However, more collaborative research and robust validation are imperative to further evaluate this innovative evolving technique.
Collapse
Affiliation(s)
- Veenu Singla
- a Department of Radiodiagnosis , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Nidhi Prabhakar
- a Department of Radiodiagnosis , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Niranjan Khandelwal
- a Department of Radiodiagnosis , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Gaurav Sharma
- a Department of Radiodiagnosis , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Tulika Singh
- a Department of Radiodiagnosis , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Neelam Aggarwal
- b Department of Obstetrics and Gynecology , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| | - Srinivasan Radhika
- c Department of Cytology and Gynecological Pathology , Post Graduate Institute of Medical Education and Research , Chandigarh , India
| |
Collapse
|
46
|
CT Perfusion in Patients with Lung Cancer: Squamous Cell Carcinoma and Adenocarcinoma Show a Different Blood Flow. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6942131. [PMID: 30255097 PMCID: PMC6140241 DOI: 10.1155/2018/6942131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/04/2018] [Accepted: 08/16/2018] [Indexed: 01/27/2023]
Abstract
Objectives To characterize tumour baseline blood flow (BF) in two lung cancer subtypes, adenocarcinoma (AC) and squamous cell carcinoma (SCC), also investigating those “borderline” cases whose perfusion value is closer to the group mean of the other histotype. Materials and Methods 26 patients (age range 36-81 years) with primary Non-Small Cell Lung Cancer (NSCLC), subdivided into 19 AC and 7 SCC, were enrolled in this study and underwent a CT perfusion, at diagnosis. BF values were computed according to the maximum-slope method and unreliable values (e.g., arising from artefacts or vessels) were automatically removed. The one-tail Welch's t-test (p-value <0.05) was employed for statistical assessment. Results At diagnosis, mean BF values (in [mL/min/100g]) of AC group [(83.5 ± 29.4)] are significantly greater than those of SCC subtype [(57.0 ± 27.2)] (p-value = 0.02). However, two central SCCs undergoing artefacts from vena cava and pulmonary artery have an artificially increased mean BF. Conclusions The different hemodynamic behaviour of AC and SCC should be considered as a biomarker supporting treatment planning to select the patients, mainly with AC, that would most benefit from antiangiogenic therapies. The significance of results was achieved by automatically detecting and excluding artefactual BF values.
Collapse
|
47
|
Niu T, Yang P, Sun X, Mao T, Xu L, Yue N, Kuang Y, Shi L, Nie K. Variations of quantitative perfusion measurement on dynamic contrast enhanced CT for colorectal cancer: implication of standardized image protocol. Phys Med Biol 2018; 63:165009. [PMID: 29889046 DOI: 10.1088/1361-6560/aacb99] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tumor angiogenesis is considered an important prognostic factor. With an increasing emphasis on imaging evaluation of the tumor microenvironment, dynamic contrast enhanced-computed tomography (DCE-CT) has evolved as an important functional technique in this setting. Yet many questions remain as to how and when these functional measurements should be performed for each agent and tumor type, and what quantitative models should be used in the fitting process. In this study, we evaluated the variations of perfusion measurement on DCE-CT for rectal cancer patients from (1) different tracer kinetic models, (2) different scan acquisition lengths, and (3) different scan intervals. A total of seven commonly used models were studied: the adiabatic approximation to the tissue homogeneity (AATH) model, adiabatic approximation to the homogeneity tissue with fixed transit time (AATHFT) model, the Tofts model (TM), the extended Tofts model (ETM), Patlak model, Logan model, and the model-free deconvolution method. Akaike's information criterion was used to identify the best fitting model. The interchangeability of different models was further evaluated using Bland-Altman analysis. All models gave comparable blood volume (BV) measurements except the Patlak method. While for the volume transfer constant (Ktrans) estimation, AATHFT, AATH, and ETM generated reasonable agreement among each other but not for the other models. Regarding the blood flow (BF) measurement, no two models were interchangeable. In addition, the perfusion parameters were compared with four acquisition times (45, 65, 85, and 105 s) and four temporal intervals (1, 2, 3, and 4 s). No significant difference was observed in the volume transfer constant (Ktrans), BV, and BF measurements when comparing data acquired over 65 s with data acquired over 105 s using any of the DCE models in this study. Yet increasing the temporal interval led to a significant overestimation of BF in the deconvolution method. In conclusion, the perfusion measurement is indeed model dependent and the image acquisition/processing technique is dependent. The radiation dose of DCE-CT was an average of 1.5-2 times an abdomen/pelvic CT, which is not insubstantial. To take the DCE-CT forward as a biomarker in oncology, prospective studies should be carefully designed with the optimal image acquisition and analysis technique.
Collapse
Affiliation(s)
- Tianye Niu
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310013, People's Republic of China. Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310019, People's Republic of China. Both authors contribute equally
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li KL, Lewis D, Jackson A, Zhao S, Zhu X. Low-dose T1W DCE-MRI for early time points perfusion measurement in patients with intracranial tumors: A pilot study applying the microsphere model to measure absolute cerebral blood flow. J Magn Reson Imaging 2018; 48:543-557. [PMID: 29473980 DOI: 10.1002/jmri.25979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/30/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Previous studies have measured cerebral blood flow (CBF) with DSC-MRI using an "early time points" (ET) method based on microsphere theory. PURPOSE To develop and assess a new ET method for absolute CBF estimation using low-dose high-temporal (LDHT) T1W-DCE-MRI. STUDY TYPE Retrospective cohort study. SUBJECTS Seven patients with sporadic vestibular schwannoma (VS) who underwent test-retest imaging; one patient with glioblastoma multiforme (GBM) imaged pretreatment; and 12 neurofibromatosis type 2 (NF2) patients undergoing bevacizumab treatment, imaged pre- and 90 days posttreatment. FIELD STRENGTH/SEQUENCE LDHT-DCE-MRI was performed at 1.5 and 3.0T, using 3D spoiled gradient echo with phase cycling. DSC-MRI performed in one patient, using 3D echo-shifted multi-shot echo-planar imaging (PRESTO) at 3T. ASSESSMENT Through Monte Carlo simulations, CBF estimation using three newly developed average contrast agent concentration (AC) -based methods (ACrPK, ACrMG, ACcomb), was compared against conventional maximum gradient (MG) approaches, at varying Rician noise levels. Reproducibility and applicability of the ACcomb method was assessed in our sporadic-VS/GBM/NF2 patient cohort, respectively. STATISTICAL TESTS Reproducibility was measured using test-retest coefficient of variation (CoV). Pre- and posttreatment CBF values were compared using paired t-test with Bonferroni correction. RESULTS Monte Carlo stimulations demonstrated that AC-based methods, particularly ACcomb, offered superior accuracy to conventional MG approaches. Overall test-retest CoV using the ACcomb method was 5.76 in normal-appearing white matter (NAWM). The new ACcomb method produced gray matter/white matter CBF estimates in the NF2 patient cohort of 55.9 ± 13.9/25.8 ± 3.5 on day 0; compared with 155.6 ± 17.2/128.4 ± 29.1 for the classical MG method. There was a moderate (10% using ACcomb and ACrPK) increase in CBF of NAWM 90 days post therapy (P = 0.03 and 0.005). DATA CONCLUSION Our new AC-based method of CBF estimation offers excellent reproducibility, and displays more accuracy in both Monte Carlo analysis and clinical data application, than conventional MG-based approaches. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 4 J. MAGN. RESON. IMAGING 2018;48:543-557.
Collapse
Affiliation(s)
- Ka-Loh Li
- Division of Informatics, Imaging and Data Science, The University of Manchester, 27 Palatine Road, Manchester, United Kingdom
| | - Daniel Lewis
- Division of Informatics, Imaging and Data Science, The University of Manchester, 27 Palatine Road, Manchester, United Kingdom
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Scott Lane, Salford, Manchester, United Kingdom
| | - Alan Jackson
- Division of Informatics, Imaging and Data Science, The University of Manchester, 27 Palatine Road, Manchester, United Kingdom
| | - Sha Zhao
- Division of Informatics, Imaging and Data Science, The University of Manchester, 27 Palatine Road, Manchester, United Kingdom
| | - Xiaoping Zhu
- Division of Informatics, Imaging and Data Science, The University of Manchester, 27 Palatine Road, Manchester, United Kingdom
| |
Collapse
|
49
|
Dynamic contrast-enhanced CT for the assessment of tumour response in malignant pleural mesothelioma: a pilot study. Eur Radiol 2018; 29:682-688. [DOI: 10.1007/s00330-018-5533-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/25/2018] [Accepted: 05/11/2018] [Indexed: 10/28/2022]
|
50
|
Ng CS, Wei W, Duran C, Ghosh P, Anderson EF, Chandler AG, Yao JC. CT perfusion in normal liver and liver metastases from neuroendocrine tumors treated with targeted antivascular agents. Abdom Radiol (NY) 2018; 43:1661-1669. [PMID: 29075824 DOI: 10.1007/s00261-017-1367-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To assess the effects of bevacizumab and everolimus, individually and combined, on CT perfusion (CTp) parameters in liver metastases from neuroendocrine tumors (mNET) and normal liver. METHODS This retrospective study comprised 27 evaluable patients with mNETs who had participated in a two-arm randomized clinical trial of mono-therapy with bevacizumab (Arm B) or everolimus (Arm E) for 3 weeks, followed by combination of both targeted agents. CTp was undertaken at baseline, 3 and 9 weeks, to evaluate blood flow (BF), blood volume (BV), mean transit time (MTT), permeability surface area product (PS), and hepatic arterial fraction (HAF) of mNET and normal liver, using a dual-input distributed parameter physiological model. Linear mixed models were used to estimate and compare CTp parameter values between time-points. RESULTS In tumor, mono-therapy with bevacizumab significantly reduced BV (p = 0.05); everolimus had no effects on CTp parameters. Following dual-therapy, BV and BF were significantly lower than baseline in both arms (p ≤ 0.04), and PS was significantly lower in Arm E (p < 0.0001). In normal liver, mono-therapy with either agent had no significant effects on CTp parameters: dual-therapy significantly reduced BV, MTT, and PS, and increased HAF, relative to baseline in Arm E (p ≤ 0.04); in Arm B, only PS reduced (p = 0.04). CONCLUSIONS Bevacizumab and everolimus, individually and when combined, have significant and differential effects on CTp parameters in mNETs and normal liver, which is evident soon after starting therapy. CTp may offer an early non-invasive means to investigate the effects of drugs in tumor and normal tissue.
Collapse
|