1
|
Dogan N, Mijnheer BJ, Padgett K, Nalichowski A, Wu C, Nyflot MJ, Olch AJ, Papanikolaou N, Shi J, Holmes SM, Moran J, Greer PB. AAPM Task Group Report 307: Use of EPIDs for Patient-Specific IMRT and VMAT QA. Med Phys 2023; 50:e865-e903. [PMID: 37384416 PMCID: PMC11230298 DOI: 10.1002/mp.16536] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/23/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
PURPOSE Electronic portal imaging devices (EPIDs) have been widely utilized for patient-specific quality assurance (PSQA) and their use for transit dosimetry applications is emerging. Yet there are no specific guidelines on the potential uses, limitations, and correct utilization of EPIDs for these purposes. The American Association of Physicists in Medicine (AAPM) Task Group 307 (TG-307) provides a comprehensive review of the physics, modeling, algorithms and clinical experience with EPID-based pre-treatment and transit dosimetry techniques. This review also includes the limitations and challenges in the clinical implementation of EPIDs, including recommendations for commissioning, calibration and validation, routine QA, tolerance levels for gamma analysis and risk-based analysis. METHODS Characteristics of the currently available EPID systems and EPID-based PSQA techniques are reviewed. The details of the physics, modeling, and algorithms for both pre-treatment and transit dosimetry methods are discussed, including clinical experience with different EPID dosimetry systems. Commissioning, calibration, and validation, tolerance levels and recommended tests, are reviewed, and analyzed. Risk-based analysis for EPID dosimetry is also addressed. RESULTS Clinical experience, commissioning methods and tolerances for EPID-based PSQA system are described for pre-treatment and transit dosimetry applications. The sensitivity, specificity, and clinical results for EPID dosimetry techniques are presented as well as examples of patient-related and machine-related error detection by these dosimetry solutions. Limitations and challenges in clinical implementation of EPIDs for dosimetric purposes are discussed and acceptance and rejection criteria are outlined. Potential causes of and evaluations of pre-treatment and transit dosimetry failures are discussed. Guidelines and recommendations developed in this report are based on the extensive published data on EPID QA along with the clinical experience of the TG-307 members. CONCLUSION TG-307 focused on the commercially available EPID-based dosimetric tools and provides guidance for medical physicists in the clinical implementation of EPID-based patient-specific pre-treatment and transit dosimetry QA solutions including intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) treatments.
Collapse
Affiliation(s)
- Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ben J Mijnheer
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Kyle Padgett
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Adrian Nalichowski
- Department of Radiation Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Chuan Wu
- Department of Radiation Oncology, Sutter Medical Foundation, Roseville, California, USA
| | - Matthew J Nyflot
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Arthur J Olch
- Department of Radiation Oncology, University of Southern California, and Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Niko Papanikolaou
- Division of Medical Physics, UT Health-MD Anderson, San Antonio, Texas, USA
| | - Jie Shi
- Sun Nuclear Corporation - A Mirion Medical Company, Melbourne, Florida, USA
| | | | - Jean Moran
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peter B Greer
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, NSW, Australia
- School of Information and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
2
|
Lambri N, Hernandez V, Sáez J, Pelizzoli M, Parabicoli S, Tomatis S, Loiacono D, Scorsetti M, Mancosu P. Multicentric evaluation of a machine learning model to streamline the radiotherapy patient specific quality assurance process. Phys Med 2023; 110:102593. [PMID: 37104920 DOI: 10.1016/j.ejmp.2023.102593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/02/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
PURPOSE Patient-specific quality assurance (PSQA) is performed to ensure that modulated treatment plans can be delivered as intended, but constitutes a substantial workload that could slow down the radiotherapy process and delay the start of clinical treatments. In this study, we investigated a machine learning (ML) tree-based ensemble model to predict the gamma passing rate (GPR) for volumetric modulated arc therapy (VMAT) plans. MATERIALS AND METHODS 5622 VMAT plans from multiple treatment sites were selected from a database of Institution 1 and the ML model trained using 19 metrics. PSQA analyses were performed automatically using criteria 3%/1 mm (global normalization, absolute dose, 10% threshold) and 95% action limit. Model's performance was evaluated on an out-of-sample test set of Institution 1 and on two independent sets of measurements collected at Institution 2 and Institution 3. Mean absolute error (MAE), as well as the model's sensitivity and specificity, were computed. RESULTS The model obtained a MAE of 2.33%, 2.54% and 3.91% for the three Institutions, with a specificity of 0.90, 0.90 and 0.68, and a sensitivity of 0.61, 0.25, and 0.55, respectively. Small positive median values of the residuals (i.e., the difference between measurements and predictions) were observed for each Institution (0.95%, 1.66%, and 3.42%). Thus, the model's predictions were, on average, close to the real values and provided a conservative estimation of the GPR. CONCLUSIONS ML models can be integrated into clinical practice to streamline the radiotherapy workflow, but they should be center-specific or thoroughly verified within centers before clinical use.
Collapse
Affiliation(s)
- Nicola Lambri
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, Tarragona, Spain
| | - Jordi Sáez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marco Pelizzoli
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy; Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, Italy
| | - Sara Parabicoli
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy; Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, Italy
| | - Stefano Tomatis
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Daniele Loiacono
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Marta Scorsetti
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Pietro Mancosu
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
3
|
RapidArc treatment planning quality assurance using electronic portal imaging device for cervical cancer. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396919000542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractPurpose:The main objective of this study is to assure the quality of cervical cancer treatment plans using an electronic portal imaging device (EPID) in RapidArc techniques.Materials and Methods:Fifteen cases of cervical cancer patients undergoing RapidArc technique were selected to evaluate the quality assurance (QA) of their treatment. The computed tomography (CT) of each patient was obtained with 3-mm-slice thickness and transferred to the Eclipse treatment planning system. The prescribed dose (PD) of 50·4 Gy with 1·8 Gy per fraction to planning target volume (PTV) was used for each patient. The aim of treatment planning was to achieve 95% of PD to cover 97%, and dose to the PTV should not receive 105% of the PD. All RapidArc plans were created using the AAA algorithm and treated on Varian DHX using 6 MV photon beam, with two full arcs. Gamma analysis was used to evaluate the quality of the treatment plans with accepting criteria of 95% at 3%/3 mm.Results:In this study, maximum and average gamma values were 2·53 ± 0·409 and 0·195 ± 0·059 showing very small deviation and indicating the smaller difference between both predicted and portal doses. Gamma Area changes from > 0·8 to > 1·2. SD increased to 5·4% and mean standard error increased to 4·67%.Conclusion:On the basis of these outcomes, we can summarise that the EPID is a useful tool for QA in standardising and evaluating RapidArc treatment plans of cervical cancer in routine clinical practice.
Collapse
|
4
|
Latala A, Fujak E, Walewska A, Kukołowicz P. The comparison of VMAT test results for Clinac 2300C/D and TrueBeam accelerators. Med Dosim 2020; 45:219-224. [PMID: 32008886 DOI: 10.1016/j.meddos.2019.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/07/2019] [Accepted: 12/11/2019] [Indexed: 11/18/2022]
Abstract
Volumetric Modulated Radiotherapy (VMAT) implementation requires additional Quality Assurance (QA) tests to assure stable machine performance especially in terms of dynamic parameters synchronization. The lack of a twin machine for TrueBeam led us to the investigation of backup workflow with Clinacs 2300C/D. These Clinacs were upgraded to make them VMAT-enabled. This study aimed to compare long-term VMAT performance QA on 3 accelerators: TrueBeam (TB) and 2 Clinacs (V4 and V5). All VMAT test plans were provided by Varian. The test set consisted of initial and advanced tests. Initial tests were intended to check the gravity effect on Multileaf Collimator (MLC) and dosimetry system. As the results of these tests were correct and there was visual inspection applied for MLC positioning accuracy analysis, they were not presented in the paper. We focused on 2 advanced tests: dose rate vs gantry speed and dose rate vs MLC speed. The idea of the advanced test was to compare segments irradiated with the same fluence but different dose rate, gantry speed or MLC speed. Test sets were irradiated weekly on average for 12 months. These tests were analysed following Varian procedures and criteria using in-house-developed software. Apart from that we calculated correlation between all segments pairs and performed profile analysis. According to Varian criteria, all tests for TrueBeam were very well within the tolerances. Dose rate vs gantry speed tests for Clinacs were within allowed limits while as many as 28% and 6% of dose rate vs MLC speed tests failed for Clinacs V4 and V5, respectively. The profile analysis revealed tests for which the difference between measured and planned dose was over 3% and still met the criteria. The correlation analysis showed that VMAT plans on TrueBeam were irradiated repeatably because all segments were strongly correlated. There was no correlation between the segment with the highest MLC speed and the other segments on Clinacs in dose rate vs MLC speed test. This segment was irradiated randomly. TrueBeam is more reliable than upgraded Clinacs 2300C/D for VMAT performance. That is why in our centre the one of upgraded Clinac that performed tests better served only as a backup machine for VMAT technique, and the second one was excluded from clinical use for this technique.
Collapse
Affiliation(s)
- Agata Latala
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Medical Physics, Warsaw, Poland.
| | - Edyta Fujak
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Medical Physics, Warsaw, Poland.
| | - Agnieszka Walewska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Medical Physics, Warsaw, Poland.
| | - Paweł Kukołowicz
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Medical Physics, Warsaw, Poland.
| |
Collapse
|
5
|
Ohira S, Sagawa T, Ueda Y, Inui S, Masaoka A, Akino Y, Mizuno H, Miyazaki M, Koizumi M, Teshima T. Effect of collimator angle on HyperArc stereotactic radiosurgery planning for single and multiple brain metastases. Med Dosim 2019; 45:85-91. [PMID: 31378401 DOI: 10.1016/j.meddos.2019.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 11/26/2022]
Abstract
We assessed the effect of collimator angle on the dosimetric parameters for targets and organs at risk (OARs) for collimator-optimized HA (CO-HA) and non-CO-HA (nCO-HA) plans. The nCO-HA and CO-HA plans were retrospectively generated for 26 patients (1 to 8 brain metastases). The dosimetric parameters for planning target volume (homogeneity index [HI]; conformity index [CI]; gradient index [GI]) and for OARs were compared. The modulation complexity score for volumetric modulated arc therapy (MCSV) and monitor units (MUs) were calculated. Doses were measured using the electronic portal imaging device and compared with the expected doses. Dosimetric parameters of the HI, CI, and GI for single (n = 12) and multiple (n = 14) metastases cases were comparable (p > 0.05). For multiple metastases cases, the CO-HA plan provided lower V4Gy, V12Gy, V14Gy, V16Gy for brain tissue compared to the nCO-HA plan (p < 0.05). Doses for OARs (D0.1cc) (brainstem, chiasm, Hippocampus, lens, optic nerves, and retinas) were comparable (p > 0.05). For multiple metastases cases, the CO-HA plan resulted in less complex multileaf collimator (MLC) patterns (MCSV = 0.19 ± 0.04, p < 0.01), lower MUs (8596 ± 1390 MUs, p < 0.01), and shorter beam-on time (6.2 ± 1.0 min, p < 0.01) compared to the nCO-HA plan (0.16 ± 0.04, 9365 ± 1630, and 6.7 ± 1.2 for MCSV, MUs, and beam-on time, respectively). For both treatment approach, the equivalent gamma passing rate was obtained with the 3%/3 mm and 2%/2 mm criteria (p > 0.05). The collimator optimization in the HA planning reduced doses to brain tissues and improved the treatment efficacy.
Collapse
Affiliation(s)
- Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan; Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Tomohiro Sagawa
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shoki Inui
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Akira Masaoka
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuichi Akino
- Division of Medical Physics, Oncology Center, Osaka University Hospital, Suita, Japan
| | - Hirokazu Mizuno
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
6
|
Xie K, Sun H, Gao L, Sui J, Lin T, Ni X. A study on the correlation between radiation field size and gamma index passing rate for MatriXX. Medicine (Baltimore) 2019; 98:e16536. [PMID: 31348271 PMCID: PMC6709154 DOI: 10.1097/md.0000000000016536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/02/2022] Open
Abstract
This study aimed to analyze the influence of the radiation field size on the passing rate of the treatment planning system using MatriXX if the field irradiated the circuit.Two sets of static fields which were 10 cm and 30 cm in the left-right direction (X), and was 31 cm to 40 cm in gun-target direction (Y) were designed. In these fields, the gantry was 0 and the monitor units were 200 MU. Two plans from an esophagus carcinoma patient with a planning target volume of 86.4 cm and a cervical carcinoma patient with a planning target volume (PTV) of 2094.1 cm were chosen. The passing rates of these plans were gained without and with protecting the circuit area from lead alloys. The gamma analysis was used and the standard was set to 3%/3 mm.The verification passing rate decreased from 95.0% to 69.2% when X was 10 cm while Y increased from 31 cm to 40 cm. With the protection from low melting point lead alloys, the passing rate was from 96.2% to 89.6%. The results of the second set of plans without lead alloys were similar but the passing rate decreased more sharply. The passing rates of the 2 patients were 99.5% and 57.1%. With the protection of the lead alloys, their passing rates were 99.8% and 72.1%, respectively.The results showed that with the increase of the radiation field size in the Y direction, more areas were irradiated in the circuit, and the passing rate gradually decreases and dropped sharply at a certain threshold. After putting lead alloys above the circuit, the passing rate was much better in the static field but was still less than 90% in the second patient volumetric modulated arc therapy (VMAT) because the circuit was irradiate in other directions. In daily QA, we should pay attention to these patients with long size tumor.
Collapse
Affiliation(s)
- Kai Xie
- Department of Radiation Oncology, Changzhou No. 2 People's Hospital, Nanjing Medical University
- The Center for Medical Physics of Nanjing Medical University, Changzhou, China
| | - Hongfei Sun
- Department of Radiation Oncology, Changzhou No. 2 People's Hospital, Nanjing Medical University
- The Center for Medical Physics of Nanjing Medical University, Changzhou, China
| | - Liugang Gao
- Department of Radiation Oncology, Changzhou No. 2 People's Hospital, Nanjing Medical University
- The Center for Medical Physics of Nanjing Medical University, Changzhou, China
| | - Jianfeng Sui
- Department of Radiation Oncology, Changzhou No. 2 People's Hospital, Nanjing Medical University
- The Center for Medical Physics of Nanjing Medical University, Changzhou, China
| | - Tao Lin
- Department of Radiation Oncology, Changzhou No. 2 People's Hospital, Nanjing Medical University
- The Center for Medical Physics of Nanjing Medical University, Changzhou, China
| | - Xinye Ni
- Department of Radiation Oncology, Changzhou No. 2 People's Hospital, Nanjing Medical University
- The Center for Medical Physics of Nanjing Medical University, Changzhou, China
| |
Collapse
|
7
|
Chun M, Joon An H, Kwon O, Oh DH, Park JM, Kim JI. Impact of plan parameters and modulation indices on patient-specific QA results for standard and stereotactic VMAT. Phys Med 2019; 62:83-94. [PMID: 31153402 DOI: 10.1016/j.ejmp.2019.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/30/2022] Open
Abstract
PURPOSE To demonstrate the impact of modulation indices and plan parameters on the gamma passing rates (GPR) of patient-specific quality assurance of standard and stereotactic volumetric modulated arc therapy (VMAT) plans. METHODS A total of 758 patients' QA plans were utilized, including standard VMAT plans with Trilogy (n = 87, group A) and TreuBeam STx (n = 332, group B), and 339 stereotactic VMAT plans with TrueBeam STx (group C). Modulation indices were obtained considering the speed and acceleration of the multileaf collimator (MLC) (MIs, MIa), and MLC, gantry speed, and dose rate changes (MIt). The mean aperture size (MA), monitor unit (MU), and amount of jaw tracking (%JT) were acquired. Gamma analysis was performed with 2 mm/2% and 1 mm/2% for the standard and stereotactic VMAT plans, respectively. Statistical analyses were performed to investigate the correlation between modulation index/plan parameters and GPR. RESULTS Spearman's rank correlation to GPRs with MIs, MIa, and MIt, were -0.44, -0.45, and -0.46 for group A; -0.39, -0.37, and -0.38 for group B; and -0.04, -0.11, and -0.10 for group C, respectively. While MU and MA showed significant correlations in all groups, %JT showed a significant correlation only with stereotactic VMAT plans. The most influential parameter combinations were MU-MA (rs = 0.50), MIs-%JT (rs = 0.43), and MU-%JT (rs = 0.38) for groups A, B, and C, respectively. CONCLUSIONS MLC modulation mostly affected the GPR in the delivery of standard VMAT plans, while MU and %JT showed more importance in stereotactic VMAT plans.
Collapse
Affiliation(s)
- Minsoo Chun
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Hyun Joon An
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ohyun Kwon
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do Hoon Oh
- Department of Radiation Oncology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea; Center for Convergence Research on Robotics, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Covington EL, Snyder JD, Wu X, Cardan RA, Popple RA. Assessing the feasibility of single target radiosurgery quality assurance with portal dosimetry. J Appl Clin Med Phys 2019; 20:135-140. [PMID: 30933414 PMCID: PMC6522988 DOI: 10.1002/acm2.12578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose To assess the feasibility of using portal dosimetry (PD) for pre‐treatment quality assurance of single target, flattening filter free (FFF), volumetric arc therapy intracranial radiosurgery plans. Methods A PD algorithm was created for a 10X FFF beam on a Varian Edge linear accelerator (Varian Inc, Palo Alto, CA, USA). Treatment plans that were previously evaluated with Gafchromic EBT‐XD (Ashland, Bridgewater, NJ, USA) film were measured via PD and analyzed with the ARIA Portal Dosimetry workspace. Absolute dose evaluation for film and PD was done by computing the mean dose in the region receiving greater than or equal to 90% of the max dose and comparing to the mean dose in the same region calculated by the treatment planning system (TPS). Gamma analysis with 10% threshold and 3%/2 mm passing criteria was performed on film and portal images. Results Thirty‐six PD verification plans were delivered and analyzed. The average PD to TPS dose was 0.989 ± 0.01 while film to TPS dose was 1.026 ± 0.01. All PD plans passed the gamma analysis with 100% of points having gamma <1. Overall, PD to TPS dose agreement was found to be target size dependent. As target size decreases, PD to TPS dose ratio decreased from 1.004 for targets with diameters between 15–31 mm and 0.978 for targets with diameters less than 15 mm. Conclusion The agreement of PD to TPS mean dose in the high dose region was found to be dependent on target size. Film measurements did not exhibit size dependence. All PD plans passed the 3%/2 mm gamma analysis, but caution should be used when using PD to assess overall dosimetric accuracy of the treatment plan for small targets.
Collapse
Affiliation(s)
- Elizabeth L Covington
- Department of Radiation Oncology, University of Alabama - Birmingham, South Birmingham, AL, USA
| | - Jesse D Snyder
- Department of Radiation Oncology, University of Alabama - Birmingham, South Birmingham, AL, USA
| | - Xingen Wu
- Department of Radiation Oncology, University of Alabama - Birmingham, South Birmingham, AL, USA
| | - Rex A Cardan
- Department of Radiation Oncology, University of Alabama - Birmingham, South Birmingham, AL, USA
| | - Richard A Popple
- Department of Radiation Oncology, University of Alabama - Birmingham, South Birmingham, AL, USA
| |
Collapse
|
9
|
Characterization of EPID software for VMAT transit dosimetry. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2018; 41:1021-1027. [DOI: 10.1007/s13246-018-0693-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
10
|
Bedford JL, Hanson IM, Hansen VN. Comparison of forward- and back-projection in vivo EPID dosimetry for VMAT treatment of the prostate. Phys Med Biol 2018; 63:025008. [PMID: 29165319 DOI: 10.1088/1361-6560/aa9c60] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the forward-projection method of portal dosimetry for volumetric modulated arc therapy (VMAT), the integrated signal at the electronic portal imaging device (EPID) is predicted at the time of treatment planning, against which the measured integrated image is compared. In the back-projection method, the measured signal at each gantry angle is back-projected through the patient CT scan to give a measure of total dose to the patient. This study aims to investigate the practical agreement between the two types of EPID dosimetry for prostate radiotherapy. The AutoBeam treatment planning system produced VMAT plans together with corresponding predicted portal images, and a total of 46 sets of gantry-resolved portal images were acquired in 13 patients using an iViewGT portal imager. For the forward-projection method, each acquisition of gantry-resolved images was combined into a single integrated image and compared with the predicted image. For the back-projection method, iViewDose was used to calculate the dose distribution in the patient for comparison with the planned dose. A gamma index for 3% and 3 mm was used for both methods. The results were investigated by delivering the same plans to a phantom and repeating some of the deliveries with deliberately introduced errors. The strongest agreement between forward- and back-projection methods is seen in the isocentric intensity/dose difference, with moderate agreement in the mean gamma. The strongest correlation is observed within a given patient, with less correlation between patients, the latter representing the accuracy of prediction of the two methods. The error study shows that each of the two methods has its own distinct sensitivity to errors, but that overall the response is similar. The forward- and back-projection EPID dosimetry methods show moderate agreement in this series of prostate VMAT patients, indicating that both methods can contribute to the verification of dose delivered to the patient.
Collapse
Affiliation(s)
- James L Bedford
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, SM2 5PT, United Kingdom
| | | | | |
Collapse
|
11
|
Retrospective analysis of portal dosimetry pre-treatment quality assurance of prostate volumetric-modulated arc therapy (VMAT) plans. JOURNAL OF RADIOTHERAPY IN PRACTICE 2017. [DOI: 10.1017/s1460396917000486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBackgroundElectronic portal imaging device (EPID) offers high-resolution digital image that can be compared with a predicted portal dose image. A very common method to quantitatively compare a measured and calculated dose distribution that is routinely used for quality assurance (QA) of volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy treatment plans is the evaluation of the gamma index. The purpose of this work was to evaluate the gamma passing rate (%GP), maximum gamma (γmax), average gamma (γave), maximum dose difference (DDmax) and the average dose difference (DDave) for various regions of interest using Varian’s implementation of three absolute dose gamma calculation techniques of improved, local, and combined improved and local.Methods and materialsWe analyzed 232 portal dose images from 100 prostate cancer patients’ VMAT plans obtained using the Varian EPID on TrueBeam Linacs.ResultsOur data show that the %GP, γmax and γave depend on the gamma calculation method and the acceptance criteria. Higher %GP values were obtained compared with both our current institutional action level and the American Association of Physicists in Medicine Task Group 119 recommendations.ConclusionsThe results of this study can be used to establish stricter action levels for pre-treatment QA of prostate VMAT plans. A stricter 3%/3 mm improved gamma criterion with a passing rate of 97% or the 2%/2 mm improved gamma criterion with a passing rate of 95% can be achieved without additional measurements or configurations.
Collapse
|
12
|
Zwan BJ, Barnes MP, Hindmarsh J, Lim SB, Lovelock DM, Fuangrod T, O'Connor DJ, Keall PJ, Greer PB. Commissioning and quality assurance for VMAT delivery systems: An efficient time-resolved system using real-time EPID imaging. Med Phys 2017; 44:3909-3922. [PMID: 28564208 DOI: 10.1002/mp.12387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 11/07/2022] Open
Abstract
PURPOSE An ideal commissioning and quality assurance (QA) program for Volumetric Modulated Arc Therapy (VMAT) delivery systems should assess the performance of each individual dynamic component as a function of gantry angle. Procedures within such a program should also be time-efficient, independent of the delivery system and be sensitive to all types of errors. The purpose of this work is to develop a system for automated time-resolved commissioning and QA of VMAT control systems which meets these criteria. METHODS The procedures developed within this work rely solely on images obtained, using an electronic portal imaging device (EPID) without the presence of a phantom. During the delivery of specially designed VMAT test plans, EPID frames were acquired at 9.5 Hz, using a frame grabber. The set of test plans was developed to individually assess the performance of the dose delivery and multileaf collimator (MLC) control systems under varying levels of delivery complexities. An in-house software tool was developed to automatically extract features from the EPID images and evaluate the following characteristics as a function of gantry angle: dose delivery accuracy, dose rate constancy, beam profile constancy, gantry speed constancy, dynamic MLC positioning accuracy, MLC speed and acceleration constancy, and synchronization between gantry angle, MLC positioning and dose rate. Machine log files were also acquired during each delivery and subsequently compared to information extracted from EPID image frames. RESULTS The largest difference between measured and planned dose at any gantry angle was 0.8% which correlated with rapid changes in dose rate and gantry speed. For all other test plans, the dose delivered was within 0.25% of the planned dose for all gantry angles. Profile constancy was not found to vary with gantry angle for tests where gantry speed and dose rate were constant, however, for tests with varying dose rate and gantry speed, segments with lower dose rate and higher gantry speed exhibited less profile stability. MLC positional accuracy was not observed to be dependent on the degree of interdigitation. MLC speed was measured for each individual leaf and slower leaf speeds were shown to be compensated for by lower dose rates. The test procedures were found to be sensitive to 1 mm systematic MLC errors, 1 mm random MLC errors, 0.4 mm MLC gap errors and synchronization errors between the MLC, dose rate and gantry angle controls systems of 1°. In general, parameters measured by both EPID and log files agreed with the plan, however, a greater average departure from the plan was evidenced by the EPID measurements. CONCLUSION QA test plans and analysis methods have been developed to assess the performance of each dynamic component of VMAT deliveries individually and as a function of gantry angle. This methodology relies solely on time-resolved EPID imaging without the presence of a phantom and has been shown to be sensitive to a range of delivery errors. The procedures developed in this work are both comprehensive and time-efficient and can be used for streamlined commissioning and QA of VMAT delivery systems.
Collapse
Affiliation(s)
- Benjamin J Zwan
- Central Coast Cancer Centre, Gosford Hospital, Gosford, NSW, 2250, Australia
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Michael P Barnes
- Department of Radiation Oncology, Calvary Mater Hospital, Newcastle, NSW, 2298, Australia
- School of Medical Radiation Sciences, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Jonathan Hindmarsh
- Central Coast Cancer Centre, Gosford Hospital, Gosford, NSW, 2250, Australia
| | - Seng B Lim
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Centre, New York, NY, 10065, USA
| | - Dale M Lovelock
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Centre, New York, NY, 10065, USA
| | - Todsaporn Fuangrod
- Department of Radiation Oncology, Calvary Mater Hospital, Newcastle, NSW, 2298, Australia
| | - Daryl J O'Connor
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Paul J Keall
- Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Peter B Greer
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, 2308, Australia
- Department of Radiation Oncology, Calvary Mater Hospital, Newcastle, NSW, 2298, Australia
| |
Collapse
|
13
|
Assessment of monitor unit limiting strategy using volumetric modulated arc therapy for cancer of hypopharynx. Phys Med 2017; 35:73-80. [PMID: 28228330 DOI: 10.1016/j.ejmp.2017.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/05/2017] [Accepted: 01/21/2017] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To quantify relative merit of MU deprived plans against freely optimized plans in terms of plan quality and report changes induced by progressive resolution optimizer algorithm (PRO3) to the dynamic parameters of RapidArc. MATERIALS AND METHODS Ten cases of carcinoma hypopharynx were retrospectively planned in three phases without using MU tool. Replicas of these baseline plans were reoptimized using "Intermediate dose" feature and "MU tool" to reduce MUs by 20%, 35%, and 50%. Overall quality indices for target and OAR, integral dose, dose-volume spread were assessed. All plans were appraised for changes induced in RapidArc dynamic parameters and pre-treatment quality assurance (QA). RESULTS With increasing MU reduction strength (MURS), MU/Gy values reduced, for all phases with an overall range of 8.6-34.7%; mean dose rate decreased among plans of each phase, phase3 plans recorded greater reductions. MURS20% showed good trade-off between MUs and plan quality. Dose-volume spread below 5Gy was higher for baseline plans while lower between 20 and 35Gy. Integral dose was lower for MURS0%, not exceeding 1.0%, compared against restrained plans. Mean leaf aperture and control point areas increased systematically, correlated negatively with increasing MURS. Absolute delta dose rate variations were least for MURS0%. MU deprived plans exhibited GAI (>93%), better than MURS0% plans. CONCLUSION Baseline plans are superior to MU restrained plans. However, MURS20% offers equivalent and acceptable plan quality with mileage of MUs, improved GAI for complex cases. MU tool may be adopted to tailor treatment plans using PRO3.
Collapse
|
14
|
Barnes MP, Rowshanfarzad P, Greer PB. VMAT linear accelerator commissioning and quality assurance: dose control and gantry speed tests. J Appl Clin Med Phys 2016; 17:246-261. [PMID: 27167282 PMCID: PMC5690937 DOI: 10.1120/jacmp.v17i3.6067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/11/2016] [Accepted: 01/11/2016] [Indexed: 12/03/2022] Open
Abstract
In VMAT treatment delivery the ability of the linear accelerator (linac) to accurately control dose versus gantry angle is critical to delivering the plan correctly. A new VMAT test delivery was developed to specifically test the dose versus gantry angle with the full range of allowed gantry speeds and dose rates. The gantry‐mounted IBA MatriXX with attached inclinometer was used in movie mode to measure the instantaneous relative dose versus gantry angle during the plan every 0.54 s. The results were compared to the expected relative dose at each gantry angle calculated from the plan. The same dataset was also used to compare the instantaneous gantry speeds throughout the delivery compared to the expected gantry speeds from the plan. Measurements performed across four linacs generally show agreement between measurement and plan to within 1.5% in the constant dose rate regions and dose rate modulation within 0.1 s of the plan. Instantaneous gantry speed was measured to be within 0.11∘/s of the plan (1 SD). An error in one linac was detected in that the nominal gantry speed was incorrectly calibrated. This test provides a practical method to quality‐assure critical aspects of VMAT delivery including dose versus gantry angle and gantry speed control. The method can be performed with any detector that can acquire time‐resolved dosimetric information that can be synchronized with a measurement of gantry angle. The test fulfils several of the aims of the recent Netherlands Commission on Radiation Dosimetry (NCS) Report 24, which provides recommendations for comprehensive VMAT quality assurance. PACS number(s): 87.55.Qr
Collapse
|
15
|
Barnes MP, Greer PB. Time-resolved beam symmetry measurement for VMAT commissioning and quality assurance. J Appl Clin Med Phys 2016; 17:220-230. [PMID: 27074485 PMCID: PMC5874896 DOI: 10.1120/jacmp.v17i2.6026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/21/2015] [Accepted: 10/20/2015] [Indexed: 11/25/2022] Open
Abstract
In volumetric‐modulated arc therapy (VMAT) treatment delivery perfect beam symmetry is assumed by the planning system. This study aims to test this assumption and present a method of measuring time‐resolved beam symmetry measurement during a VMAT delivery that includes extreme variations of dose rate and gantry speed. The Sun Nuclear IC Profiler in gantry mount was used to measure time‐resolved in‐plane and cross‐plane profiles during plan delivery from which symmetry could be determined. Time‐resolved symmetry measurements were performed throughout static field exposures at cardinal gantry angles, conformal arcs with constant dose rate and gantry speed, and during a VMAT test plan with gantry speed and dose rate modulation. Measurements were performed for both clockwise and counterclockwise gantry rotation and across four Varian 21iX linacs. The symmetry was found to be generally constant throughout the static field exposures to within 0.3% with an exception on one linac of up to 0.7%. Agreement in symmetry between cardinal angles was always within 1.0% and typically within 0.6%. During conformal arcs the results for clockwise and counterclockwise rotation were in agreement to within 0.3%. Both clockwise and counterclockwise tended to vary in similar manner by up to 0.5% during arc consistent with the cardinal gantry angle static field results. During the VMAT test plan the symmetry generally was in agreement with the conformal arc results. Greater variation in symmetry was observed in the low‐dose‐rate regions by up to 1.75%. All results were within clinically acceptable levels using the tolerances of NCS Report 24 (2015). PACS number(s): 87.55.Qr
Collapse
|
16
|
2D EPID dose calibration for pretreatment quality control of conformal and IMRT fields: A simple and fast convolution approach. Phys Med 2016; 32:133-40. [DOI: 10.1016/j.ejmp.2015.10.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/28/2015] [Accepted: 10/26/2015] [Indexed: 11/16/2022] Open
|
17
|
Gamma index comparison of three VMAT QA systems and evaluation of their sensitivity to delivery errors. Phys Med 2015; 31:720-5. [DOI: 10.1016/j.ejmp.2015.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/18/2015] [Accepted: 05/30/2015] [Indexed: 11/19/2022] Open
|
18
|
Mancosu P, Navarria P, Reggiori G, Cozzi L, Fogliata A, Gaudino A, Lobefalo F, Paganini L, Palumbo V, Sarina B, Stravato A, Castagna L, Tomatis S, Scorsetti M. In-vivo dosimetry with Gafchromic films for multi-isocentric VMAT irradiation of total marrow lymph-nodes: a feasibility study. Radiat Oncol 2015; 10:86. [PMID: 25881084 PMCID: PMC4397694 DOI: 10.1186/s13014-015-0391-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 03/17/2015] [Indexed: 12/03/2022] Open
Abstract
Background Total marrow (lymph-nodes) irradiation (TMI-TMLI) by volumetric modulated arc therapy (VMAT) was shown to be feasible by dosimetric feasibility studies. It was demonstrated that several partially overlapping arcs with different isocenters are required to achieve the desired coverage of the hematopoietic or lymphoid tissues targets and to spare the neighbouring healthy tissues. The effect of isocenter shifts was investigated with the treatment planning system but an in- vivo verification of the procedure was not carried out. The objective of this study was the in-vivo verification of the consistency between the delivered and planned doses using bi-dimensional GafChromic EBT3 films. Methods In a first phase a phantom study was carried out to quantify the uncertainties under controlled conditions. In a second phase three patients treated with TMLI were enrolled for in-vivo dosimetry. The dose prescription was 2Gy in single fraction. Ten arcs paired on 4-6 isocenters were used to cover the target. Cone Beam Computed Tomography (CBCT) was used to verify the patient positioning at each isocenter. GafChromic EBT3 films were placed below the patient on the top of a dedicated immobilization system specifically designed. The dose maps measured with the EBT3 films were compared with the corresponding calculations along the patient support couch. Gamma Agreement Index (GAI) with dose difference of 5% and distance to agreement of 5 mm was computed. Results In the phantom study, optimal target coverage and healthy tissue sparing was observed. GAI(5%,5 mm) was 99.4%. For the patient-specific measurements, GAI(5%,5 mm) was greater than 95% and GAI (5%,3 mm) > 90% for all patients. Conclusions In vivo measurements demonstrated the delivered dose to be in good agreement with the planned one for the TMI-TMLI protocol where partially overlapping arcs with different isocenters are required.
Collapse
Affiliation(s)
- Pietro Mancosu
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Pierina Navarria
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Giacomo Reggiori
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Luca Cozzi
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Antonella Fogliata
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Anna Gaudino
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Francesca Lobefalo
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Lucia Paganini
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Valentina Palumbo
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Barbara Sarina
- Bone Marrow Transplantation Unit, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Antonella Stravato
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Luca Castagna
- Bone Marrow Transplantation Unit, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Stefano Tomatis
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| | - Marta Scorsetti
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
19
|
Crowe SB, Kairn T, Middlebrook N, Sutherland B, Hill B, Kenny J, Langton CM, Trapp JV. Examination of the properties of IMRT and VMAT beams and evaluation against pre-treatment quality assurance results. Phys Med Biol 2015; 60:2587-601. [DOI: 10.1088/0031-9155/60/6/2587] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Hobson MA, Davis SD. Comparison between an in-house 1D profile correction method and a 2D correction provided in Varian's PDPC Package for improving the accuracy of portal dosimetry images. J Appl Clin Med Phys 2015; 16:4973. [PMID: 26103173 PMCID: PMC5690095 DOI: 10.1120/jacmp.v16i2.4973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 12/10/2014] [Accepted: 12/07/2014] [Indexed: 11/23/2022] Open
Abstract
While commissioning Varian's Portal Dose Image Prediction (PDIP) algorithm for portal dosimetry, an asymmetric radial response in the portal imager due to backscatter from the support arm was observed. This asymmetric response led to differences on the order of 2%–3% for simple square fields (<20×20 cm2) when comparing the measured to predicted portal fluences. A separate problem was that discrepancies of up to 10% were seen in measured to predicted portal fluences at increasing off‐axis distance (>10 cm). We have modified suggested methods from the literature to provide a 1D correction for the off‐axis response problem which adjusts the diagonal profile used in the portal imager calibration. This inherently cannot fix the 2D problem since the PDIP algorithm assumes a radially symmetric response and will lead to some uncertainty in portal dosimetry results. Varian has recently released generic “2D correction” files with their Portal Dosimetry Pre‐configuration (PDPC) package, but no independent testing has been published. We present the comparison between QA results using the Varian correction method to results using our 1D profile correction method using the gamma passing rates with a 3%, 3 mm criterion. The average, minimum, and maximum gamma pass rates for nine fixed‐field IMRT fields at gantry 0° using our profile correction method were 98.1%, 93.7%, and 99.8%, respectively, while the results using the PDPC correction method were 98.4%, 93.1%, and 99.8%. For four RapidArc fields, the average, minimum, and maximum gamma pass rates using our correction method were 99.6%, 99.4%, and 99.9%, respectively, while the results using the PDPC correction method were 99.8%, 99.5%, and 99.9%. The average gamma pass rates for both correction methods are quite similar, but both show improvement over the uncorrected results. PACS numbers: 87.55.Qr, 87.55.N‐
Collapse
|
21
|
VMAT monthly QA using two techniques: 2D ion chamber array with an isocentric gantry mount and an in vivo dosimetric device attached to gantry. JOURNAL OF RADIOTHERAPY IN PRACTICE 2014. [DOI: 10.1017/s1460396912000556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractPurposeVarian RapidArc is a volumetric modulated arc therapy (VMAT) that obtains a conformal dose around the desired structure by employing variable gantry speed, dose rate and dynamic multileaf collimator (DMLC) speed as the gantry rotates about machine isocenter. This study is meant to build upon previous research by Ling et al. by completing the tests with an in vivo dosimetric device attached to the linac gantry and a 2D ionisation chamber array with an isocentric gantry mount.Materials and methodsTwo PTW detectors, seven29 array with gantry mount and DAVID, were attached to the linear accelerator gantry, allowing each device to remain perpendicular to the beam at all gantry angles. Three tests for RapidArc evaluation were performed on these devices including: dose rate and gantry speed variation, DMLC speed and dose rate variation and DMLC position accuracy. The reproducibility of the arc data was also reported.ResultsA picket fence plan varying dose rates (111 to 600 MU/minute) and gantry speeds (5·5 to 4·3°/second) was delivered consisting of seven sections of different combinations. These measurements were compared with static gantry, open field measurements and found to be within 2·39% for the DAVID device and 0·84% for the seven29. A four-section picket fence of varying DMLC speeds (0·46, 0·92, 1·84 and 2·76 cm/second) was similarly evaluated and found to be within 1·99% and 3·66% for the DAVID and seven29, respectively. For DMLC position accuracy, a picket fence arc plan was compared with a static picket fence and found to agree within 0.38% and 2.91%. Reproducibility for these three RapidArc plans was found to be within 0·30% and 2·70% for the DAVID and seven29.ConclusionThe DAVID and seven29 detectors were able to perform the RapidArc quality assurance tests efficiently and accurately and the results were reproducible. Periodic verification of DMLC movement, dose rate variation and gantry speed variation relating to RapidArc delivery can be completed in a timelier manner using this equipment.
Collapse
|
22
|
Mancosu P, Reggiori G, Alongi F, Cozzi L, Fogliata A, Lobefalo F, Navarria P, Stravato A, Tomatis S, Scorsetti M. Total monitor units influence on plan quality parameters in volumetric modulated arc therapy for breast case. Phys Med 2014; 30:296-300. [DOI: 10.1016/j.ejmp.2013.08.142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022] Open
|
23
|
Wang Q, Dai J, Zhang K. A novel method for routine quality assurance of volumetric-modulated arc therapy. Med Phys 2014; 40:101712. [PMID: 24089902 DOI: 10.1118/1.4820439] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Volumetric-modulated arc therapy (VMAT) is delivered through synchronized variation of gantry angle, dose rate, and multileaf collimator (MLC) leaf positions. The delivery dynamic nature challenges the parameter setting accuracy of linac control system. The purpose of this study was to develop a novel method for routine quality assurance (QA) of VMAT linacs. METHODS ArcCheck is a detector array with diodes distributing in spiral pattern on cylindrical surface. Utilizing its features, a QA plan was designed to strictly test all varying parameters during VMAT delivery on an Elekta Synergy linac. In this plan, there are 24 control points. The gantry rotates clockwise from 181° to 179°. The dose rate, gantry speed, and MLC positions cover their ranges commonly used in clinic. The two borders of MLC-shaped field seat over two columns of diodes of ArcCheck when the gantry rotates to the angle specified by each control point. The ratio of dose rate between each of these diodes and the diode closest to the field center is a certain value and sensitive to the MLC positioning error of the leaf crossing the diode. Consequently, the positioning error can be determined by the ratio with the help of a relationship curve. The time when the gantry reaches the angle specified by each control point can be acquired from the virtual inclinometer that is a feature of ArcCheck. The gantry speed between two consecutive control points is then calculated. The aforementioned dose rate is calculated from an acm file that is generated during ArcCheck measurements. This file stores the data measured by each detector in 50 ms updates with each update in a separate row. A computer program was written in MATLAB language to process the data. The program output included MLC positioning errors and the dose rate at each control point as well as the gantry speed between control points. To evaluate this method, this plan was delivered for four consecutive weeks. The actual dose rate and gantry speed were compared with the QA plan specified. Additionally, leaf positioning errors were intentionally introduced to investigate the sensitivity of this method. RESULTS The relationship curves were established for detecting MLC positioning errors during VMAT delivery. For four consecutive weeks measured, 98.4%, 94.9%, 89.2%, and 91.0% of the leaf positioning errors were within ± 0.5 mm, respectively. For the intentionally introduced leaf positioning systematic errors of -0.5 and +1 mm, the detected leaf positioning errors of 20 Y1 leaf were -0.48 ± 0.14 and 1.02 ± 0.26 mm, respectively. The actual gantry speed and dose rate closely followed the values specified in the VMAT QA plan. CONCLUSIONS This method can assess the accuracy of MLC positions and the dose rate at each control point as well as the gantry speed between control points at the same time. It is efficient and suitable for routine quality assurance of VMAT.
Collapse
Affiliation(s)
- Qingxin Wang
- Department of Radiation Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing 100021, China
| | | | | |
Collapse
|
24
|
Bedford JL, Hanson IM, Hansen VN. Portal dosimetry for VMAT using integrated images obtained during treatment. Med Phys 2014; 41:021725. [DOI: 10.1118/1.4862515] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Nicolini G, Clivio A, Vanetti E, Krauss H, Fenoglietto P, Cozzi L, Fogliata A. Evaluation of an aSi-EPID with flattening filter free beams: Applicability to the GLAaS algorithm for portal dosimetry and first experience for pretreatment QA of RapidArc. Med Phys 2013; 40:111719. [PMID: 24320427 DOI: 10.1118/1.4824923] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- G Nicolini
- IOSI, Oncology Institute of Southern Switzerland, Radiation Oncology Department, Medical Physics Unit, Bellinzona CH-6500, Switzerland
| | | | | | | | | | | | | |
Collapse
|
26
|
A comparison of the gamma index analysis in various commercial IMRT/VMAT QA systems. Radiother Oncol 2013; 109:370-6. [PMID: 24100148 DOI: 10.1016/j.radonc.2013.08.048] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/26/2013] [Accepted: 08/31/2013] [Indexed: 11/21/2022]
Abstract
PURPOSE To investigate the variability of the global gamma index (γ) analysis in various commercial IMRT/VMAT QA systems and to assess the impact of measurement with low resolution detector arrays on γ. MATERIALS Five commercial QA systems (PTW 2D-Array, Scandidos Delta4, SunNuclear ArcCHECK, Varian EPID, and Gafchromic EBT2 film) were investigated. The response of γ analysis to deliberately introduced errors in pelvis and head & neck IMRT and RapidArc™ plans was evaluated in each system. A theoretical γ was calculated in each commercial QA system software (PTW Verisoft, Delta4 software, SNC Patient, Varian Portal Dosimetry and IBA OmniPro, respectively), using treatment planning system resolution virtual measurements and compared to an independent calculation. Error-induced plans were measured on a linear accelerator and were evaluated against the error-free dose distribution calculated using Varian Eclipse™ in the relevant phantom CT scan. In all cases, global γ was used with a 20% threshold relative to a point selected in a high dose and low gradient region. The γ based on measurement was compared against the theoretical to evaluate the response of each system. RESULTS There was statistically good agreement between the predicted γ based on the virtual measurements from each software (concordance correlation coefficient, ρc>0.92) relative to the independent prediction in all cases. For the actual measured data, the agreement with the predicted γ reduces with tightening passing criteria and the variability between the different systems increases. This indicates that the detector array configuration and resolution have greater impact on the experimental calculation of γ due to under-sampling of the dose distribution, blurring effects, noise, or a combination. CONCLUSIONS It is important to understand the response and limitations of the gamma index analysis combined with the equipment in use. For the same pass-rate criteria, different devices and software combinations exhibit varying levels of agreement with the predicted γ analysis.
Collapse
|
27
|
Fredh A, Scherman JB, Fog LS, Munck af Rosenschöld P. Patient QA systems for rotational radiation therapy: a comparative experimental study with intentional errors. Med Phys 2013; 40:031716. [PMID: 23464311 DOI: 10.1118/1.4788645] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of the present study was to investigate the ability of commercial patient quality assurance (QA) systems to detect linear accelerator-related errors. METHODS Four measuring systems (Delta(4®), OCTAVIUS(®), COMPASS, and Epiqa™) designed for patient specific quality assurance for rotational radiation therapy were compared by measuring four clinical rotational intensity modulated radiation therapy plans as well as plans with introduced intentional errors. The intentional errors included increasing the number of monitor units, widening of the MLC banks, and rotation of the collimator. The measurements were analyzed using the inherent gamma evaluation with 2% and 2 mm criteria and 3% and 3 mm criteria. When applicable, the plans with intentional errors were compared with the original plans both by 3D gamma evaluation and by inspecting the dose volume histograms produced by the systems. RESULTS There was considerable variation in the type of errors that the various systems detected; the failure rate for the plans with errors varied between 0% and 72%. When using 2% and 2 mm criteria and 95% as a pass rate the Delta(4®) detected 15 of 20 errors, OCTAVIUS(®) detected 8 of 20 errors, COMPASS detected 8 of 20 errors, and Epiqa™ detected 20 of 20 errors. It was also found that the calibration and measuring procedure could benefit from improvements for some of the patient QA systems. CONCLUSIONS The various systems can detect various errors and the sensitivity to the introduced errors depends on the plan. There was poor correlation between the gamma evaluation pass rates of the QA procedures and the deviations observed in the dose volume histograms.
Collapse
Affiliation(s)
- Anna Fredh
- Department of Radiation Oncology, Radiation Medicine Research Center, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
28
|
Woodruff HC, Fuangrod T, Rowshanfarzad P, McCurdy BMC, Greer PB. Gantry-angle resolved VMAT pretreatment verification using EPID image prediction. Med Phys 2013; 40:081715. [DOI: 10.1118/1.4816384] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
29
|
Greer PB. 3D EPID based dosimetry for pre-treatment verification of VMAT – methods and challenges. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/444/1/012010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Kroon PS, Hol S, Essers M. Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans. Radiat Oncol 2013; 8:149. [PMID: 23800024 PMCID: PMC3723919 DOI: 10.1186/1748-717x-8-149] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/03/2013] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The main aim of the current study was to assess the dosimetric accuracy and clinical quality of volumetric modulated arc therapy (VMAT) plans for stereotactic (stage I) and conventional (stage III) lung cancer treatments planned with Eclipse version 10.0 Anisotropic Analytical Algorithm (AAA) and Acuros XB (AXB) algorithm. METHODS The dosimetric impact of using AAA instead of AXB, and grid size 2.5 mm instead of 1.0 mm for VMAT treatment plans was evaluated. The clinical plan quality of AXB VMAT was assessed using 45 stage I and 73 stage III patients, and was compared with published results, planned with VMAT and hybrid-VMAT techniques. RESULTS The dosimetric impact on near-minimum PTV dose (D98%) using AAA instead of AXB was large (underdose up to 12.3%) for stage I and very small (underdose up to 0.8%) for stage III lung treatments. There were no significant differences for dose volume histogram (DVH) values between grid sizes. The calculation time was significantly higher for AXB grid size 1.0 than 2.5 mm (p < 0.01). The clinical quality of the VMAT plans was at least comparable with clinical qualities given in literature of lung treatment plans with VMAT and hybrid-VMAT techniques. The average mean lung dose (MLD), lung V(20Gy) and V(5Gy) in this study were respectively 3.6 Gy, 4.1% and 15.7% for 45 stage I patients and 12.4 Gy, 19.3% and 46.6% for 73 stage III lung patients. The average contra-lateral lung dose V(5Gy-cont) was 35.6% for stage III patients. CONCLUSIONS For stereotactic and conventional lung treatments, VMAT calculated with AXB grid size 2.5 mm resulted in accurate dose calculations. No hybrid technique was needed to obtain the dose constraints. AXB is recommended instead of AAA for avoiding serious overestimation of the minimum target doses compared to the actual delivered dose.
Collapse
Affiliation(s)
- Petra S Kroon
- Department of Medical Physics, Institute Verbeeten, Brugstraat 10, 5042 SB Tilburg, the Netherlands
| | - Sandra Hol
- Department of Radiotherapy, Institute Verbeeten, Brugstraat 10, 5042 SB Tilburg, the Netherlands
| | - Marion Essers
- Department of Medical Physics, Institute Verbeeten, Brugstraat 10, 5042 SB Tilburg, the Netherlands
| |
Collapse
|
31
|
Serna A, Mata F, Puchades V. Establishing an optimized patient-specific verification program for volumetric modulated arc therapy. Med Dosim 2013; 38:274-9. [PMID: 23540493 DOI: 10.1016/j.meddos.2013.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 01/14/2013] [Accepted: 02/19/2013] [Indexed: 11/29/2022]
Abstract
Quality assurance (QA) of volumetric modulated arc therapy (VMAT) increases the workload significantly. We compared the results from 4 verification methods to establish an efficient VMAT QA. Planning for VMAT treatments was carried out for 40 consecutive patients. Pretreatment verifications were carried out with ion chamber array Physikalish-Technische Werkstätten (PTW729), electronic portal dosimetry (EPID), ion chamber measurements, and independent dose calculation with Diamond program. 2D analyses were made using the gamma analysis (3mm distance to agreement and 3% dose difference relative to maximum, 10% dose threshold). Average point dose difference calculated by Eclipse relative to ion chamber measurements and Diamond were 0.1%±0.9% and 0.6%±2.2%, respectively. Average pass rate for PTW729 was 99.2%±1.9% and 98.3%±1.3% for EPID. The total required time (linac occupancy time given in parentheses) for each QA method was: PTW729 43.5 minutes (26.5 minutes), EPID 14.5 minutes (2.5 minutes), ion chamber 34.5 minutes (26.5 minutes), and Diamond 12.0 minutes (0 minute). The results were consistent and allowed us to establish an optimized protocol, considering safety and accuracy as well as workload, consisting of 2 verification methods: EPID 2D analysis and independent dose calculation.
Collapse
Affiliation(s)
- Alfredo Serna
- Department of Medical Physics, Hospital Universitario Santa Lucía, Cartagena, Spain.
| | | | | |
Collapse
|
32
|
Clinical practice and evaluation of electronic portal imaging device for VMAT quality assurance. Med Dosim 2013; 38:35-41. [DOI: 10.1016/j.meddos.2012.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/26/2012] [Accepted: 05/08/2012] [Indexed: 01/18/2023]
|
33
|
Warkentin B, Rathee S, Steciw S. 2D lag and signal nonlinearity correction in an amorphous silicon EPID and their impact on pretreatment dosimetric verification. Med Phys 2012; 39:6597-608. [PMID: 23127054 DOI: 10.1118/1.4757582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE This investigation provides measurements of signal lag and nonlinearity separately for the Varian aS500 electronic portal imaging device (EPID), and an algorithm to correct for these effects in 2D; their potential impact on intensity modulated radiation therapy (IMRT) verification is also investigated. The authors quantify lag, as a function of both delivered monitor units (MU) and time, by using a range of MUs delivered at a clinically used rate of 400 MU∕min. Explicit cumulative lag curves are thus determined for a range of MUs and times between the end of irradiation and the end of image acquisition. Signal nonlinearity is also investigated as a function of total MUs delivered. The family of cumulative lag curves and signal nonlinearity are then used to determine their effects on dynamic multileaf collimator (MLC) (IMRT) deliveries, and to correct for theses effects in 2D. METHODS Images acquired with an aS500 EPID and Varis Portal-Vision software were used to quantify detector lag and signal-nonlinearity. For the signal lag investigation, Portal-Vision's service monitor was used to acquire EPID images at a rate of 8 frames/s. The images were acquired during irradiation and 66 s thereafter, by inhibiting the M-holdoff-In signal of the Linac for a range of 4.5-198.5 MUs. Relative cumulative lag was calculated by integrating the EPID signal for a time after beam-off, and normalizing this to the integrated EPID signal accumulated during radiation. Signal nonlinearity was studied by acquiring 10 × 10 cm(2) open-field EPID images in "integrated image" mode for a range of 2-500 MUs, and normalized to the 100 MU case. All data were incorporated into in-house written software to create a 2D correction map for these effects, using the field's MLC file and a field-specific calculated 2D "time-map," which keeps track of the time elapsed from the last fluence delivered at each given point in the image to the end of the beam delivery. RESULTS Relative cumulative lag curves reveal that the lag alone can deviate the EPID's perceived dose by as large as 6% (1 MU delivery, 60 s postirradiation). For signal nonlinearity relative to 100 MU, EPID signals per MU of 0.84 and 1.01 were observed for 2 and 500 MUs, respectively. Correction maps were applied to a 1 cm sweeping-window 14 × 14 cm(2) field and clinical head-and-neck IMRT field. A mean correction of 1.028 was implemented in the head-and-neck field, which significantly reduced lag-related asymmetries in the EPID images, and restored linearity to the EPID imager's dose response. Corrections made to the sweeping-field showed good agreement with the treatment planning system-predicted field, yielding an average percent difference of 0.05% ± 0.91%, compared to the -1.32% ± 1.02% before corrections, or 1.75% ± 1.04% when only a signal nonlinearity correction is made. CONCLUSIONS Lag and signal-nonlinearity have been quantified for an aS500 EPID imager, and an effective 2D correction method has been developed which effectively removes nonlinearity and lag effects. Both of these effects were shown to negatively impact IMRT verifications. Especially fields that involve prolonged irradiation and small overall MUs should be corrected for in 2D.
Collapse
Affiliation(s)
- B Warkentin
- Department of Medical Physics, Cross Cancer Institute, Alberta T6G 1Z2, Canada
| | | | | |
Collapse
|
34
|
Lang S, Reggiori G, Puxeu Vaqué J, Calle C, Hrbacek J, Klöck S, Scorsetti M, Cozzi L, Mancosu P. Pretreatment quality assurance of flattening filter free beams on 224 patients for intensity modulated plans: A multicentric study. Med Phys 2012; 39:1351-6. [DOI: 10.1118/1.3685461] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|