1
|
Berthe D, Heck L, Resch S, Dierolf M, Brantl J, Günther B, Petrich C, Achterhold K, Pfeiffer F, Grandl S, Hellerhoff K, Herzen J. Grating-based phase-contrast computed tomography for breast tissue at an inverse compton source. Sci Rep 2024; 14:25576. [PMID: 39462058 PMCID: PMC11513984 DOI: 10.1038/s41598-024-77346-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
The introduction of mammography screening programs has significantly reduced breast cancer mortality rates. Nevertheless, some lesions remain undetected, especially in dense breast tissue. Studies have shown that phase-contrast imaging can improve breast cancer diagnosis by increasing soft tissue contrast. Furthermore, grating-based phase-contrast imaging enables the simultaneous acquisition of absorption, phase-contrast, and scattering, so-called dark-field images. The latter allows the classification of microcalcifications. In addition, breast computed tomography (BCT) systems can identify and discriminate overlapping but clinically relevant structures. This study investigates the benefit of combining grating-based phase-contrast with BCT. We explore the potential of grating-based phase-contrast breast computed tomography (gbpc-BCT) with a breast phantom and a freshly dissected fibroadenoma. Improved image contrast could be achieved with radiation doses comparable to those used in clinical BCT.
Collapse
Affiliation(s)
- Daniel Berthe
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Germany.
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany.
| | - Lisa Heck
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Germany
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
| | - Sandra Resch
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Germany
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Germany
| | - Johannes Brantl
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Germany
| | - Benedikt Günther
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Germany
| | - Christian Petrich
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Germany
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Germany
- Radiology Department, Red Cross Hospital, Munich, Germany
- TUM Institute for Advanced Study, Technical University of Munich, Garching, 85748, Germany
| | - Susanne Grandl
- Department of Diagnostic and Interventional Radiology, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, 81675, Germany
| | - Karin Hellerhoff
- Department of Diagnostic and Interventional Radiology, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, München, 81675, Germany
| | - Julia Herzen
- Chair of Biomedical Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, 85748, Germany
- Research Group Biomedical Imaging Physics, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, Garching, 85748, Germany
| |
Collapse
|
2
|
Yuan J, Das M. Transport-of-intensity model for single-mask x-ray differential phase contrast imaging. OPTICA 2024; 11:478-484. [PMID: 40191626 PMCID: PMC11970617 DOI: 10.1364/optica.510537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2025]
Abstract
X-ray phase contrast imaging holds great promise for improving the visibility of light-element materials such as soft tissues and tumors. The single-mask differential phase contrast imaging method stands out as a simple and effective approach to yield differential phase contrast. In this work, we introduce a model for a single-mask phase imaging system based on the transport-of-intensity equation. Our model provides an accessible understanding of signal and contrast formation in single-mask x-ray phase imaging, offering a clear perspective on the image formation process, for example, the origin of alternate bright and dark fringes in phase contrast intensity images. Aided by our model, we present an efficient retrieval method that yields differential phase contrast imagery in a single acquisition step. Our model gives insight into the contrast generation and its dependence on the system geometry and imaging parameters in both the initial intensity image as well as retrieved images. The model validity as well as the proposed retrieval method are demonstrated via both experimental results on a system developed in house as well as Monte Carlo simulations. In conclusion, our work not only provides a model for an intuitive visualization of image formation but also offers a method to optimize differential phase imaging setups, holding tremendous promise for advancing medical diagnostics and other applications.
Collapse
Affiliation(s)
- Jingcheng Yuan
- Department of Physics, University of Houston, 3507 Cullen Blvd, Houston, Texas 77204, USA
| | - Mini Das
- Department of Physics, University of Houston, 3507 Cullen Blvd, Houston, Texas 77204, USA
- Department of Electrical and Computer Engineering, University of Houston, 3507 Cullen Blvd, Houston, Texas 77204, USA
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, Texas 77204, USA
| |
Collapse
|
3
|
Mettivier G, Lai Y, Jia X, Russo P. Virtual dosimetry study with three cone-beam breast computed tomography scanners using a fast GPU-based Monte Carlo code. Phys Med Biol 2024; 69:045028. [PMID: 38237186 DOI: 10.1088/1361-6560/ad2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024]
Abstract
Objective. To compare the dosimetric performance of three cone-beam breast computed tomography (BCT) scanners, using real-time Monte Carlo-based dose estimates obtained with the virtual clinical trials (VCT)-BREAST graphical processing unit (GPU)-accelerated platform dedicated to VCT in breast imaging. Approach. A GPU-based Monte Carlo (MC) code was developed for replicatingin silicothe geometric, x-ray spectra and detector setups adopted, respectively, in two research scanners and one commercial BCT scanner, adopting 80 kV, 60 kV and 49 kV tube voltage, respectively. Our cohort of virtual breasts included 16 anthropomorphic voxelized breast phantoms from a publicly available dataset. For each virtual patient, we simulated exams on the three scanners, up to a nominal simulated mean glandular dose of 5 mGy (primary photons launched, in the order of 1011-1012per scan). Simulated 3D dose maps (recorded for skin, adipose and glandular tissues) were compared for the same phantom, on the three scanners. MC simulations were implemented on a single NVIDIA GeForce RTX 3090 graphics card.Main results.Using the spread of the dose distribution as a figure of merit, we showed that, in the investigated phantoms, the glandular dose is more uniform within less dense breasts, and it is more uniformly distributed for scans at 80 kV and 60 kV, than at 49 kV. A realistic virtual study of each breast phantom was completed in about 3.0 h with less than 1% statistical uncertainty, with 109primary photons processed in 3.6 s computing time.Significance. We reported the first dosimetric study of the VCT-BREAST platform, a fast MC simulation tool for real-time virtual dosimetry and imaging trials in BCT, investigating the dose delivery performance of three clinical BCT scanners. This tool can be adopted to investigate also the effects on the 3D dose distribution produced by changes in the geometrical and spectrum characteristics of a cone-beam BCT scanner.
Collapse
Affiliation(s)
- Giovanni Mettivier
- Dipartimento di Fisica 'Ettore Pancini', Università di Napoli Federico II, I-80126 Naples, Italy
- INFN Sezione di Napoli, I-80126 Naples, Italy
| | - Youfang Lai
- Innovative Technology of Radiotherapy Computation and Hardware (iTORCH) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 752878, United States of America
| | - Xun Jia
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD 21224, United States of America
| | - Paolo Russo
- Dipartimento di Fisica 'Ettore Pancini', Università di Napoli Federico II, I-80126 Naples, Italy
- INFN Sezione di Napoli, I-80126 Naples, Italy
| |
Collapse
|
4
|
Yuan J, Das M. Transport-of-Intensity Model for Single-Mask X-ray Differential Phase Contrast Imaging. ARXIV 2024:arXiv:2310.19087v2. [PMID: 38351933 PMCID: PMC10862942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
X-ray phase contrast imaging holds great promise for improving the visibility of light-element materials such as soft tissues and tumors. Single-mask differential phase contrast imaging method stands out as a simple and effective approach to yield differential phase contrast. In this work, we introduce a novel model for a single-mask phase imaging system based on the transport-of-intensity equation. Our model provides an accessible understanding of signal and contrast formation in single-mask X-ray phase imaging, offering a clear perspective on the image formation process, for example, the origin of alternate bright and dark fringes in phase contrast intensity images. Aided by our model, we present an efficient retrieval method that yields differential phase contrast imagery in a single acquisition step. Our model gives insight into the contrast generation and its dependence on the system geometry and imaging parameters in both the initial intensity image as well as in retrieved images. The model validity as well as the proposed retrieval method is demonstrated via both experimental results on a system developed in-house as well as with Monte Carlo simulations. In conclusion, our work not only provides a model for an intuitive visualization of image formation but also offers a method to optimize differential phase imaging setups, holding tremendous promise for advancing medical diagnostics and other applications.
Collapse
Affiliation(s)
- Jingcheng Yuan
- Department of Physics, University of Houston, 3507 Cullen Blvd, Houston, TX 77204, USA
| | - Mini Das
- Department of Physics, University of Houston, 3507 Cullen Blvd, Houston, TX 77204, USA
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204, USA
| |
Collapse
|
5
|
Rounds CC, Li C, Zhou W, Tichauer KM, Brankov JG. A cadaveric breast cancer tissue phantom for phase-contrast X-ray imaging applications. Animal Model Exp Med 2023; 6:427-432. [PMID: 37859563 PMCID: PMC10614119 DOI: 10.1002/ame2.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/19/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND As mammography X-ray imaging technologies advance and provide elevated contrast in soft tissues, a need has developed for reliable imaging phantoms for use in system design and component calibration. In advanced imaging modalities such as refraction-based methods, it is critical that developed phantoms capture the biological details seen in clinical precancerous and cancerous cases while minimizing artifacts that may be caused due to phantom production. This work presents the fabrication of a breast tissue imaging phantom from cadaveric breast tissue suitable for use in both transmission and refraction-enhanced imaging systems. METHODS Human cancer cell tumors were grown orthotopically in nude athymic mice and implanted into the fixed tissue while maintaining the native tumor/adipose tissue interface. RESULTS The resulting human-murine tissue hybrid phantom was mounted on a clear acrylic housing for absorption and refraction X-ray imaging. Digital breast tomosynthesis was also performed. CONCLUSION Both attenuation-based imaging and refraction-based imaging of the phantom are presented to confirm the suitability of this phantom's use in both imaging modalities.
Collapse
Affiliation(s)
- Cody C. Rounds
- Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Medical Imaging Research CenterIllinois Institute of TechnologyChicagoIllinoisUSA
| | - Chengyue Li
- Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Medical Imaging Research CenterIllinois Institute of TechnologyChicagoIllinoisUSA
| | - Wei Zhou
- Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Medical Imaging Research CenterIllinois Institute of TechnologyChicagoIllinoisUSA
| | - Kenneth M. Tichauer
- Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Medical Imaging Research CenterIllinois Institute of TechnologyChicagoIllinoisUSA
| | - Jovan G. Brankov
- Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Medical Imaging Research CenterIllinois Institute of TechnologyChicagoIllinoisUSA
- Electrical and Computer EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
| |
Collapse
|
6
|
Kolokotroni A, Gkikopoulou E, Rinotas V, Douni E. Phosphotungstic acid-enhanced microcomputed tomography for quantitative visualization of mouse mammary gland morphology. J Med Imaging (Bellingham) 2023; 10:S22402. [PMID: 36825256 PMCID: PMC9941684 DOI: 10.1117/1.jmi.10.s2.s22402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/20/2022] [Indexed: 02/23/2023] Open
Abstract
Purpose Even though current techniques provide two-dimensional (2D) imaging of the mouse mammary gland, they fail to achieve high-resolution three-dimensional (3D) reconstruction and quantification. The objective of this study is to establish and evaluate quantitative visualization of the mouse mammary epithelium through microcomputed tomography (microCT) using phosphotungstic acid (PTA) as a contrast agent. Approach Ex vivo microCT scan images of the mouse mammary glands were obtained following staining by PTA, whereas for quantification we adapted volumetric parameters that are used for assessing trabecular bone morphometry and can be structurally applicable in the mammary ductal system. The proposed method was validated in distinct developmental stages and upon short-term treatment with synthetic progesterone, using the carmine alum staining for comparison. Results We demonstrate a simple PTA staining procedure that allows high contrast 3D imaging of mammary glands and quantitation of mammary duct structures using microCT. We validated the proposed method in distinct developmental stages, such as at puberty, adult mice, pregnancy as well as upon progesterone treatment. Compared with carmine alum staining, the microCT analysis provided higher resolution 2D and 3D images of the mammary gland morphology, with lower background that enabled the detection of subtle changes. Conclusions This work is the first study that employs PTA-enhanced microCT for 3D imaging and volumetric analysis of mouse mammary glands. Our results establish PTA-enhanced microCT as a useful tool for comparative studies of the mouse mammary gland morphology that can apply in mutant mice and for the preclinical evaluation of pharmaceuticals in breast cancer models.
Collapse
Affiliation(s)
- Anthi Kolokotroni
- Agricultural University of Athens, Department of Biotechnology, Laboratory of Genetics, Athens, Greece
- Biomedical Sciences Research Center “Alexander Fleming,” Institute for Bioinnovation, Vari, Greece
| | - Evi Gkikopoulou
- Agricultural University of Athens, Department of Biotechnology, Laboratory of Genetics, Athens, Greece
- Biomedical Sciences Research Center “Alexander Fleming,” Institute for Bioinnovation, Vari, Greece
| | - Vagelis Rinotas
- Biomedical Sciences Research Center “Alexander Fleming,” Institute for Bioinnovation, Vari, Greece
| | - Eleni Douni
- Agricultural University of Athens, Department of Biotechnology, Laboratory of Genetics, Athens, Greece
- Biomedical Sciences Research Center “Alexander Fleming,” Institute for Bioinnovation, Vari, Greece
| |
Collapse
|
7
|
Insight into microvascular adaptive alterations in the Glisson system of biliary atresia after Kasai portoenterostomy using X-ray phase-contrast CT. Eur Radiol 2022; 33:4082-4093. [PMID: 36576546 DOI: 10.1007/s00330-022-09364-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To investigate microvascular alterations in the Glisson system of biliary atresia (BA) patients after Kasai portoenterostomy (KP) using three-dimensional (3D) virtual histopathology based on X-ray phase-contrast CT (PCCT). METHODS Liver explants from BA patients were imaged using PCCT, and 32 subjects were included and divided into two groups: KP (n = 16) and non-KP (n = 16). Combined with histological analysis and 3D visualization technology, 3D virtual histopathological assessment of the biliary, arterial, and portal venous systems was performed. According to loop volume ratio, 3D spatial density, relative surface area, tortuosity, and other parameters, pathological changes of microvasculature in the Glisson system were investigated. RESULTS In the non-KP group, bile ducts mostly manifested as radial multifurcated hyperplasia and twisted into loops. In the KP group, the bile duct hyperplasia was less, and the loop volume ratio of bile ducts decreased by 13.89%. Simultaneously, the arterial and portal venous systems presented adaptive alterations in response to degrees of bile duct hyperplasia. Compared with the non-KP group, the 3D spatial density of arteries in the KP group decreased by 3.53%, and the relative surface area decreased from 0.088 ± 0.035 to 0.039 ± 0.015 (p < .01). Deformed portal branches gradually recovered after KP, with a 2.93% increase in 3D spatial density and a decrease in tortuosity from 1.17 ± 0.06 to 1.14 ± 0.04 (p < .01) compared to the non-KP group. CONCLUSION 3D virtual histopathology via PCCT clearly reveals the microvascular structures in the Glisson system of BA patients and provides key insights into the morphological mechanism of microvascular adaptation induced by biliary tract dredging after KP in BA disease. KEY POINTS • 3D virtual histopathology via X-ray phase-contrast computed tomography clearly presented the morphological structures and pathological changes of microvasculature in the Glisson system of biliary atresia patients. • The morphological alterations of microvasculature in the Glisson system followed the competitive occupancy mechanism in the process of biliary atresia.
Collapse
|
8
|
Xu J, Wang Z, van Gogh S, Rawlik M, Spindler S, Stampanoni M. Intensity-based iterative reconstruction for helical grating interferometry breast CT with static grating configuration. OPTICS EXPRESS 2022; 30:13847-13863. [PMID: 35472989 DOI: 10.1364/oe.455967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Grating interferometry breast computed tomography (GI-BCT) has the potential to provide enhanced soft tissue contrast and to improve visualization of cancerous lesions for breast imaging. However, with a conventional scanning protocol, a GI-BCT scan requires longer scanning time and higher operation complexity compared to conventional attenuation-based CT. This is mainly due to multiple grating movements at every projection angle, so-called phase stepping, which is used to retrieve attenuation, phase, and scattering (dark-field) signals. To reduce the measurement time and complexity and extend the field of view, we have adopted a helical GI-CT setup and present here the corresponding tomographic reconstruction algorithm. This method allows simultaneous reconstruction of attenuation, phase contrast, and scattering images while avoiding grating movements. Experiments on simulated phantom and real initial intensity, visibility and phase maps are provided to validate our method.
Collapse
|
9
|
Mettivier G, di Franco F, Sarno A, Castriconi R, Di Lillo F, Bliznakova K, Russo P. In-Line Phase Contrast Mammography, Phase Contrast Digital Breast Tomosynthesis, and Phase Contrast Breast Computed Tomography With a Dedicated CT Scanner and a Microfocus X-Ray Tube: Experimental Phantom Study. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3003380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Zhu Y, O'Connell AM, Ma Y, Liu A, Li H, Zhang Y, Zhang X, Ye Z. Dedicated breast CT: state of the art-Part II. Clinical application and future outlook. Eur Radiol 2021; 32:2286-2300. [PMID: 34476564 DOI: 10.1007/s00330-021-08178-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Dedicated breast CT is being increasingly used for breast imaging. This technique provides images with no compression, removal of tissue overlap, rapid acquisition, and available simultaneous assessment of microcalcifications and contrast enhancement. In this second installment in a 2-part review, the current status of clinical applications and ongoing efforts to develop new imaging systems are discussed, with particular emphasis on how to achieve optimized practice including lesion detection and characterization, response to therapy monitoring, density assessment, intervention, and implant evaluation. The potential for future screening with breast CT is also addressed. KEY POINTS: • Dedicated breast CT is an emerging modality with enormous potential in the future of breast imaging by addressing numerous clinical needs from diagnosis to treatment. • Breast CT shows either noninferiority or superiority with mammography and numerical comparability to MRI after contrast administration in diagnostic statistics, demonstrates excellent performance in lesion characterization, density assessment, and intervention, and exhibits promise in implant evaluation, while potential application to breast cancer screening is still controversial. • New imaging modalities such as phase-contrast breast CT, spectral breast CT, and hybrid imaging are in the progress of R & D.
Collapse
Affiliation(s)
- Yueqiang Zhu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Avice M O'Connell
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY, 14642, USA
| | - Yue Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Aidi Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Haijie Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Xiaohua Zhang
- Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive, Suite 112, West Henrietta, NY, 14586, USA
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China.
| |
Collapse
|
11
|
Dedicated breast CT: state of the art-Part I. Historical evolution and technical aspects. Eur Radiol 2021; 32:1579-1589. [PMID: 34342694 DOI: 10.1007/s00330-021-08179-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Dedicated breast CT is an emerging 3D isotropic imaging technology for breast, which overcomes the limitations of 2D compression mammography and limited angle tomosynthesis while providing some of the advantages of magnetic resonance imaging. This first installment in a 2-part review describes the evolution of dedicated breast CT beginning with a historical perspective and progressing to the present day. Moreover, it provides an overview of state-of-the-art technology. Particular emphasis is placed on technical limitations in scan protocol, radiation dose, breast coverage, patient comfort, and image artifact. Proposed methods of how to address these technical challenges are also discussed. KEY POINTS: • Advantages of breast CT include no tissue overlap, improved patient comfort, rapid acquisition, and concurrent assessment of microcalcifications and contrast enhancement. • Current clinical and prototype dedicated breast CT systems differ in acquisition modes, imaging techniques, and detector types. • There are still details to be decided regarding breast CT techniques, such as scan protocol, radiation dose, breast coverage, patient comfort, and image artifact.
Collapse
|
12
|
Zhao Y, Zhao Q, Zheng M, Yang T, Liu D, Sun L, Lv W, Li Y, Liu Y, Hu C. Comparison of microstructural imaging of the root canal isthmus using propagation-based X-ray phase-contrast and absorption micro-computed tomography. J Microsc 2021; 284:74-82. [PMID: 34143441 DOI: 10.1111/jmi.13042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
Clear and complete microstructural imaging of the root canal isthmus is an important part of pathological investigations in research and clinical practice. X-ray micro-computed tomography (μCT) is a widely used non-destructive imaging technique, which allows for distortion-free three-dimensional (3D) visualisation. While absorption μCT typically has poor contrast resolution for observing the root canal isthmus, especially for weak-absorbing tissues, propagation-based X-ray phase-contrast imaging (PBI) is a powerful imaging method, which in its combination with μCT (PB-PCμCT) enables high-resolution and high-contrast microstructural imaging of the weak-absorbing tissues in samples. To investigate the feasibility and ability of PB-PCμCT in microstructural imaging of the root canal isthmus, conventional absorption μCT and PB-PCμCT experiments were performed. The two-dimensional (2D) and 3D comparison results demonstrated that, compared to absorption μCT, PB-PCμCT has the ability to image the root canal isthmus more clearly and completely, and thus, it has great potential to serve as a valuable tool for biomedical and preclinical studies on the root canal isthmus.
Collapse
Affiliation(s)
- Yuqing Zhao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Qi Zhao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Mengting Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Tingting Yang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Dayong Liu
- Tianjin Medical University School of Stomatology, Tianjin, People's Republic of China
| | - Lianlian Sun
- Department of Stomatology, Fifth Central of Tianjin, Tianjin, People's Republic of China
| | - Wenjuan Lv
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yimin Li
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yongchao Liu
- Department of Radiation Oncology, Fifth Central of Tianjin, Tianjin, People's Republic of China
| | - Chunhong Hu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Lv WJ, Zhao XY, Hu DD, Xin XH, Qin LL, Hu CH. Insight into Bile Duct Reaction to Obstruction from a Three-dimensional Perspective Using ex Vivo Phase-Contrast CT. Radiology 2021; 299:597-610. [PMID: 33876972 DOI: 10.1148/radiol.2021203967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Biliary obstruction leads to an increase in biliary pressure within the biliary system, which induces the morphologic adaptation of the biliary tree. Purpose To observe and to quantify the morphologic characteristics of the adaptation in a bile duct ligation rat model and verify it in patients with biliary atresia in a three-dimensional (3D) manner using x-ray phase-contrast CT. Materials and Methods A bile duct ligation model was induced in 40 male Sprague-Dawley rats, which were divided into five groups: the control group (no ligation) and groups 2, 4, 6, and 8 weeks after bile duct ligation (eight animals in each group). Liver tissue samples (approximately 1.8 cm in length and 1.3 cm in height) were imaged by using phase-contrast CT and compared with histologic analysis. With a combination of phase-contrast CT and 3D visualization technology, the entire biliary system and the intrahepatic vascular system were quantitatively analyzed according to downstream, midstream, and upstream domains based on bile duct volume, surface area, and other parameters. Additionally, liver explant tissues from 28 patients with biliary atresia were studied to determine the impact of biliary tract reconstruction. Results To offset the increased biliary pressure within the biliary system, the ductular reaction in the downstream, midstream, and upstream domains manifested as dilatation, spiderweb-like looping, and interconnected honeycomb-like patterns, respectively. The most severe ductular reaction occurred in the upstream domain, and the relative surface area (mean, 0.02 μm-1 ± 0.01, 0.04 μm-1 ± 0.01, 0.07 μm-1 ± 0.02, and 0.10 μm-1 ± 0.02 for the 2-8-week groups, respectively; P < .01 among the groups) and volume fraction of ductules (mean, 16.54% ± 4.62, 19.69% ± 6.41, 26.92% ± 5.82, and 38.34% ± 10.36 for the 2-8-week groups, respectively; P < .01 among the groups except between the 2- and 4-week groups [P = .062]) significantly increased over time. In patients with biliary atresia, it was observed that both fibrosis and proliferative ductules regressed after successful biliary tract reconstruction following Kasai portoenterostomy. Furthermore, ductular reaction was accompanied by a progressive increase in the arterial supply but a loss of portal blood supply. Conclusion X-ray phase-contrast CT with three-dimensional rendering of the biliary system in a bile duct ligation rat model provides key insights into ductular reaction or biliary self-adaptation triggered by increased biliary pressure. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Vannier and Wang in this issue.
Collapse
Affiliation(s)
- Wen-Juan Lv
- From the School of Biomedical Engineering and Technology, Tianjin Medical University, No. 22 Qixiangtai Rd, Tianjin 300070, China (W.J.L., X.H.X., L.L.Q., C.H.H.); Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China (X.Y.Z.); Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China (X.Y.Z.); and the Second Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China (D.D.H.)
| | - Xin-Yan Zhao
- From the School of Biomedical Engineering and Technology, Tianjin Medical University, No. 22 Qixiangtai Rd, Tianjin 300070, China (W.J.L., X.H.X., L.L.Q., C.H.H.); Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China (X.Y.Z.); Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China (X.Y.Z.); and the Second Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China (D.D.H.)
| | - Dou-Dou Hu
- From the School of Biomedical Engineering and Technology, Tianjin Medical University, No. 22 Qixiangtai Rd, Tianjin 300070, China (W.J.L., X.H.X., L.L.Q., C.H.H.); Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China (X.Y.Z.); Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China (X.Y.Z.); and the Second Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China (D.D.H.)
| | - Xiao-Hong Xin
- From the School of Biomedical Engineering and Technology, Tianjin Medical University, No. 22 Qixiangtai Rd, Tianjin 300070, China (W.J.L., X.H.X., L.L.Q., C.H.H.); Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China (X.Y.Z.); Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China (X.Y.Z.); and the Second Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China (D.D.H.)
| | - Li-Li Qin
- From the School of Biomedical Engineering and Technology, Tianjin Medical University, No. 22 Qixiangtai Rd, Tianjin 300070, China (W.J.L., X.H.X., L.L.Q., C.H.H.); Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China (X.Y.Z.); Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China (X.Y.Z.); and the Second Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China (D.D.H.)
| | - Chun-Hong Hu
- From the School of Biomedical Engineering and Technology, Tianjin Medical University, No. 22 Qixiangtai Rd, Tianjin 300070, China (W.J.L., X.H.X., L.L.Q., C.H.H.); Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China (X.Y.Z.); Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis and National Clinical Research Center of Digestive Disease, Beijing, China (X.Y.Z.); and the Second Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China (D.D.H.)
| |
Collapse
|
14
|
Tavakoli Taba S, Arhatari BD, Nesterets YI, Gadomkar Z, Mayo SC, Thompson D, Fox J, Kumar B, Prodanovic Z, Hausermann D, Maksimenko A, Hall C, Dimmock M, Pavlov KM, Lockie D, Gity M, Peele A, Quiney HM, Lewis S, Gureyev TE, Brennan PC. Propagation-Based Phase-Contrast CT of the Breast Demonstrates Higher Quality Than Conventional Absorption-Based CT Even at Lower Radiation Dose. Acad Radiol 2021; 28:e20-e26. [PMID: 32035759 DOI: 10.1016/j.acra.2020.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 01/07/2023]
Abstract
RATIONALE AND OBJECTIVES Propagation-based phase-contrast CT (PB-CT) is an advanced X-ray imaging technology that exploits both refraction and absorption of the transmitted X-ray beam. This study was aimed at optimizing the experimental conditions of PB-CT for breast cancer imaging and examined its performance relative to conventional absorption-based CT (AB-CT) in terms of image quality and radiation dose. MATERIALS AND METHODS Surgically excised breast mastectomy specimens (n = 12) were scanned using both PB-CT and AB-CT techniques under varying imaging conditions. To evaluate the radiological image quality, visual grading characteristics (VGC) analysis was used in which 11 breast specialist radiologists compared the overall image quality of PB-CT images with respect to the corresponding AB-CT images. The area under the VGC curve was calculated to measure the differences between PB-CT and AB-CT images. RESULTS The highest radiological quality was obtained for PB-CT images using a 32 keV energy X-ray beam and by applying the Homogeneous Transport of Intensity Equation phase retrieval with the value of its parameter γ set to one-half of the theoretically optimal value for the given materials. Using these optimized conditions, the image quality of PB-CT images obtained at 4 mGy and 2 mGy mean glandular dose was significantly higher than AB-CT images at 4 mGy (AUCVGC = 0.901, p = 0.001 and AUCVGC = 0.819, p = 0.011, respectively). CONCLUSION PB-CT achieves a higher radiological image quality compared to AB-CT even at a considerably lower mean glandular dose. Successful translation of the PB-CT technique for breast cancer imaging can potentially result in improved breast cancer diagnosis.
Collapse
|
15
|
Ton N, Goncin U, Panahifar A, Chapman D, Wiebe S, Machtaler S. Developing a Microbubble-Based Contrast Agent for Synchrotron In-Line Phase Contrast Imaging. IEEE Trans Biomed Eng 2020; 68:1527-1535. [PMID: 33232220 DOI: 10.1109/tbme.2020.3040079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE X-ray phase contrast imaging generates contrast from refraction of X-rays, enhancing soft tissue contrast compared to conventional absorption-based imaging. Our goal is to develop a contrast agent for X-ray in-line phase contrast imaging (PCI) based on ultrasound microbubbles (MBs), by assessing size, shell material, and concentration. METHODS Polydisperse perfluorobutane-core lipid-shelled MBs were synthesized and size separated into five groups between 1 and 10 μm. We generated two size populations of polyvinyl-alcohol (PVA)-MBs, 2-3 μm and 3-4 μm, whose shells were either coated or integrated with iron oxide nanoparticles (SPIONs). Microbubbles were then embedded in agar at three concentrations: 5 × 107, 5 × 106 and 5 × 105 MBs/ml. In-line phase contrast imaging was performed at the Canadian Light Source with filtered white beam micro-computed tomography. Phase contrast intensity was measured by both counting detectable MBs, and comparing mean pixel values (MPV) in minimum and maximum intensity projections of the overall samples. RESULTS Individual lipid-MBs 6-10 μm, lipid-MBs 4-6 μm and PVA-MBs coated with SPIONs were detectable at each concentration. At the highest concentration, lipid-MBs 6-10 μm and 4-6 μm showed an overall increase in positive contrast, whereas at a moderate concentration, only lipid-MBs 6-10 μm displayed an increase. Negative contrast was also observed from two largest lipid-MBs at high concentration. CONCLUSION These data indicate that lipid-MBs larger than 4 μm are candidates for PCI, and 5 × 106 MBs/ml may be the lowest concentration suitable for generating visible phase contrast in vivo. SIGNIFICANCE Identifying a suitable MB for PCI may facilitate future clinical translation.
Collapse
|
16
|
Recent advances in X-ray imaging of breast tissue: From two- to three-dimensional imaging. Phys Med 2020; 79:69-79. [PMID: 33171371 DOI: 10.1016/j.ejmp.2020.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 11/20/2022] Open
Abstract
Breast cancer is a globally widespread disease whose detection has already been significantly improved by the introduction of screening programs. Nevertheless, mammography suffers from low soft tissue contrast and the superposition of diagnostically relevant anatomical structures as well as from low values for sensitivity and specificity especially for dense breast tissue. In recent years, two techniques for X-ray breast imaging have been developed that bring advances for the early detection of breast cancer. Grating-based phase-contrast mammography is a new imaging technique that is able to provide three image modalities simultaneously (absorption-contrast, phase-contrast and dark-field signal). Thus, an enhanced detection and delineation of cancerous structures in the phase-contrast image and an improved visualization and characterization of microcalcifications in the dark-field image is possible. Furthermore, latest studies about this approach show that dose-compatible imaging with polychromatic X-ray sources is feasible. In order to additionally overcome the limitations of projection-based imaging, efforts were also made towards the development of breast computed tomography (BCT), which recently led to the first clinical installation of an absorption-based BCT system. Further research combining the benefits of both imaging technologies is currently in progress. This review article summarizes the latest advances in phase-contrast imaging for the female breast (projection-based and three-dimensional view) with special focus on possible clinical implementations in the future.
Collapse
|
17
|
Zhang R, Fowler AM, Wilke LG, Kelcz F, Garrett JW, Chen GH, Li K. Fast acquisition with seamless stage translation (FASST) for a trimodal x-ray breast imaging system. Med Phys 2020; 47:4356-4362. [PMID: 32458449 PMCID: PMC7704901 DOI: 10.1002/mp.14297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/08/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE A major technical obstacle to bringing x-ray multicontrast (i.e., attenuation, phase, and dark-field) imaging methodology to clinical use is the prolonged data acquisition time caused by the phase stepping procedure. The purpose of this work was to introduce a fast acquisition with seamless stage translation (FASST) technique to a prototype multicontrast breast imaging system for reduced image acquisition time that is clinically acceptable. METHODS The prototype system was constructed based on a Hologic full-field digital mammography + digital breast tomosynthesis combination system. During each FASST acquisition process, a motorized stage holding a diffraction grating travels continuously with a constant velocity, and a train of 15 short x-ray pulses (35 ms each) was delivered by using the Zero-Degree Tomo mode of the Hologic system. Standard phase retrieval was applied to the 15 subimages without spatial interpolation to avoid spatial resolution loss. The method was evaluated using a physical phantom, a bovine udder specimen, and a freshly resected mastectomy specimen. The FASST technique was experimentally compared with single-shot acquisition methods and the standard phase stepping method. RESULTS The image acquisition time of the proposed method is 3.7 s. In comparison, conventional phase stepping took 105 s using the same prototype imaging system. The mean glandular dose of both methods was matched at 1.3 mGy. No artifacts or spatial resolution loss was observed in images produced by FASST. In contrast, the single-shot methods led to spatial resolution loss and residual moiré artifacts. CONCLUSIONS The FASST technique reduces the data acquisition time of the prototype multicontrast x-ray breast imaging system to 3.7 s, such that it is comparable to a clinical digital breast tomosynthesis exam.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
- University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Lee G Wilke
- University of Wisconsin Carbone Cancer Center, 600 Highland Avenue, Madison, WI, 53792, USA
- Department of Surgery, Clinical Science Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Frederick Kelcz
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - John W Garrett
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Guang-Hong Chen
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Ke Li
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| |
Collapse
|
18
|
Liu F, Li G, Yang S, Yan W, He G, Lin L. Recognition of Heterogeneous Edges in Multiwavelength Transmission Images Based on the Weighted Constraint Decision Method. APPLIED SPECTROSCOPY 2020; 74:883-893. [PMID: 32073301 DOI: 10.1177/0003702820908951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multiwavelength light transmission imaging provides a possibility for early detection of breast cancer. However, due to strong scattering during the transmission process of breast tissue analysis, the transmitted image signal is weak and the image is blurred and this makes heterogeneous edge detection difficult. This paper proposes a method based on the weighted constraint decision (WCD) method to eliminate the erosion and checkerboard effects in image histogram equalization (HE) enhancement and to improve the recognition of heterogeneous edge. Multiwavelength transmission images of phantom are acquired on the designed experimental system and the mask image with high signal-to-noise ratio (SNR) is obtained by frame accumulation and an Otsu thresholding model. Then, during image enhancement the image is divided into low-gray-level (LGL) and high-gray-level (HGL) regions according to the distribution of light intensity in image. And the probability density distribution of gray level in the LGL and HGL regions are redefined respectively according to the WCD method. Finally, the reconstructed image is obtained based on the modified HE. The experimental results show that compared with traditional image enhancement methods, the WCD method proposed in this paper can greatly improve the contrast between heterogeneous region and normal region. Moreover, the correlation between the original image data is maintained to the greatest extent, so that the edge of the heterogeneity can be detected more accurately. In conclusion, the WCD method not only accurately identifies the edge of heterogeneity in multiwavelength transmission images, but it also could improve the clinical application of multiwavelength transmission images in the early detection of breast cancer.
Collapse
Affiliation(s)
- Fulong Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| | - Gang Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| | - Shuqiang Yang
- School of physics and electronic information, Luoyang Normal University, Luoyang, China
| | - Wenjuan Yan
- School of Electronic Information Engineering, Yangtze Normal University, Chongqing, China
| | - Guoquan He
- School of Electronic Information Engineering, Yangtze Normal University, Chongqing, China
| | - Ling Lin
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Hellerhoff K, Birnbacher L, Sztrókay-Gaul A, Grandl S, Auweter S, Willner M, Marschner M, Mayr D, Reiser MF, Pfeiffer F, Herzen J. Assessment of intraductal carcinoma in situ (DCIS) using grating-based X-ray phase-contrast CT at conventional X-ray sources: An experimental ex-vivo study. PLoS One 2019; 14:e0210291. [PMID: 30625220 PMCID: PMC6326478 DOI: 10.1371/journal.pone.0210291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The extent of intraductal carcinoma in situ (DCIS) is commonly underestimated due to the discontinuous growth and lack of microcalcifications. Specimen radiography has been established to reduce the rate of re-excision. However, the predictive value for margin assessment with conventional specimen radiography for DCIS is low. In this study we assessed the potential of grating-based phase-contrast computed tomography (GBPC-CT) at conventional X-ray sources for specimen tomography of DCIS containing samples. MATERIALS AND METHODS GBPC-CT was performed on four ex-vivo breast specimens containing DCIS and invasive carcinoma of non-specific type. Phase-contrast and absorption-based datasets were manually matched with corresponding histological slices as the standard of reference. RESULTS Matching of CT images and histology was successful. GBPC-CT showed an improved soft tissue contrast compared to absorption-based images revealing more histological details in the same sections. Non-calcifying DCIS exceeding the invasive tumor could be correlated to areas of dilated bright ducts around the tumor. CONCLUSIONS GBPC-CT imaging at conventional X-ray sources offers improved depiction quality for the imaging of breast tissue samples compared to absorption-based imaging, allows the identification of diagnostically relevant tissue details, and provides full three-dimensional assessment of sample margins.
Collapse
MESH Headings
- Breast Neoplasms/diagnostic imaging
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Calcinosis/diagnostic imaging
- Calcinosis/pathology
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Carcinoma, Intraductal, Noninfiltrating/surgery
- Female
- Humans
- In Vitro Techniques
- Mammography/methods
- Microscopy, Phase-Contrast/methods
- Prospective Studies
- Tomography, X-Ray Computed/methods
Collapse
Affiliation(s)
- Karin Hellerhoff
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Abteilung für Diagnostische Radiologie, Rotkreuzklinikum München, Munich, Germany
| | - Lorenz Birnbacher
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
- * E-mail:
| | - Anikó Sztrókay-Gaul
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Abteilung für Diagnostische Radiologie, Rotkreuzklinikum München, Munich, Germany
| | - Susanne Grandl
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Abteilung für Diagnostische Radiologie, Rotkreuzklinikum München, Munich, Germany
| | - Sigrid Auweter
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Marian Willner
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Mathias Marschner
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| | - Doris Mayr
- Institute of Pathology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Maximilian F. Reiser
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Herzen
- Chair of Biomedical Physics, Department of Physics & Munich School of BioEngineering, Technical University of Munich, Garching, Germany
| |
Collapse
|
20
|
Li K, Zhang R, Garrett J, Ge Y, Ji X, Chen GH. Design, Construction, and Initial Results of a Prototype Multi-Contrast X-Ray Breast Imaging System. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10573. [PMID: 30443102 DOI: 10.1117/12.2293921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
By integrating a grating-based interferometer with a clinical full field digital mammography (FFDM) system, a prototype multi-contrast (absorption, phase, and dark field) x-ray breast imaging system was developed in this work. Unlike previous benchtop-based multi-contrast x-ray imaging systems that usually have relatively long source-to-detector distance and vibration isolators or dampers for the interferometer, the FFDM hardware platform is subject to mechanical vibration and the constraint of compact system geometry. Current grating fabrication technology also imposes additional constraints on the design of the grating interferometer. Based on these technical constraints and the x-ray beam properties of the FFDM system, three gratings were designed and integrated with the FFDM system. When installing the gratings, no additional vibration damping device was used in order to test the robustness of multi-contrast imaging system against mechanical vibration. The measured visibility of the diffraction fringes was 23±3%, and two images acquired 60 minutes apart demonstrated good system reproducibility with no visible signal drift. Preliminary results generated from the prototype system demonstrate the multi-contrast imaging capability of the system. The three contrast mechanisms provide mutually complementary information of the phantom object. This prototype system provides a much needed platform for evaluating the true clinical utility of the multi-contrast x-ray imaging method for the diagnosis of breast cancer.
Collapse
Affiliation(s)
- Ke Li
- Department of Medical Physics, University of Wisconsin Health, Madison, WI.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ran Zhang
- Department of Medical Physics, University of Wisconsin Health, Madison, WI
| | - John Garrett
- Department of Medical Physics, University of Wisconsin Health, Madison, WI
| | - Yongshuai Ge
- Department of Medical Physics, University of Wisconsin Health, Madison, WI
| | - Xu Ji
- Department of Medical Physics, University of Wisconsin Health, Madison, WI
| | - Guang-Hong Chen
- Department of Medical Physics, University of Wisconsin Health, Madison, WI.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
21
|
Ivanov D, Bliznakova K, Buliev I, Popov P, Mettivier G, Russo P, Di Lillo F, Sarno A, Vignero J, Bosmans H, Bravin A, Bliznakov Z. Suitability of low density materials for 3D printing of physical breast phantoms. ACTA ACUST UNITED AC 2018; 63:175020. [DOI: 10.1088/1361-6560/aad315] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
X-Ray Phase-Contrast Technology in Breast Imaging: Principles, Options, and Clinical Application. AJR Am J Roentgenol 2018; 211:133-145. [DOI: 10.2214/ajr.17.19179] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
23
|
Braig EM, Birnbacher L, Schaff F, Gromann L, Fingerle A, Herzen J, Rummeny E, Noël P, Pfeiffer F, Muenzel D. Simultaneous wood and metal particle detection on dark-field radiography. Eur Radiol Exp 2018; 2:1. [PMID: 29708215 PMCID: PMC5909361 DOI: 10.1186/s41747-017-0034-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/28/2017] [Indexed: 11/23/2022] Open
Abstract
Background Currently, the detection of retained wood is a frequent but challenging task in emergency care. The purpose of this study is to demonstrate improved foreign-body detection with the novel approach of preclinical X-ray dark-field radiography. Methods At a preclinical dark-field x-ray radiography, setup resolution and sensitivity for simultaneous detection of wooden and metallic particles have been evaluated in a phantom study. A clinical setting has been simulated with a formalin fixated human hand where different typical foreign-body materials have been inserted. Signal-to-noise ratios (SNR) have been determined for all test objects. Results On the phantom, the SNR value for wood in the dark-field channel was strongly improved by a factor 6 compared to conventional radiography and even compared to the SNR of an aluminium structure of the same size in conventional radiography. Splinters of wood < 300 μm in diameter were clearly detected on the dark-field radiography. Dark-field radiography of the formalin-fixated human hand showed a clear signal for wooden particles that could not be identified on conventional radiography. Conclusions x-ray dark-field radiography enables the simultaneous detection of wooden and metallic particles in the extremities. It has the potential to improve and simplify the current state-of-the-art foreign-body detection.
Collapse
Affiliation(s)
- Eva-Maria Braig
- 1Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.,2Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 München, Germany
| | - Lorenz Birnbacher
- 1Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Florian Schaff
- 1Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Lukas Gromann
- 1Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Alexander Fingerle
- 2Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 München, Germany
| | - Julia Herzen
- 1Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Ernst Rummeny
- 2Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 München, Germany
| | - Peter Noël
- 1Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.,2Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 München, Germany
| | - Franz Pfeiffer
- 1Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.,2Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 München, Germany.,3Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - Daniela Muenzel
- 2Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 München, Germany
| |
Collapse
|
24
|
Pinkert MA, Salkowski LR, Keely PJ, Hall TJ, Block WF, Eliceiri KW. Review of quantitative multiscale imaging of breast cancer. J Med Imaging (Bellingham) 2018; 5:010901. [PMID: 29392158 PMCID: PMC5777512 DOI: 10.1117/1.jmi.5.1.010901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common cancer among women worldwide and ranks second in terms of overall cancer deaths. One of the difficulties associated with treating breast cancer is that it is a heterogeneous disease with variations in benign and pathologic tissue composition, which contributes to disease development, progression, and treatment response. Many of these phenotypes are uncharacterized and their presence is difficult to detect, in part due to the sparsity of methods to correlate information between the cellular microscale and the whole-breast macroscale. Quantitative multiscale imaging of the breast is an emerging field concerned with the development of imaging technology that can characterize anatomic, functional, and molecular information across different resolutions and fields of view. It involves a diverse collection of imaging modalities, which touch large sections of the breast imaging research community. Prospective studies have shown promising results, but there are several challenges, ranging from basic physics and engineering to data processing and quantification, that must be met to bring the field to maturity. This paper presents some of the challenges that investigators face, reviews currently used multiscale imaging methods for preclinical imaging, and discusses the potential of these methods for clinical breast imaging.
Collapse
Affiliation(s)
- Michael A. Pinkert
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
| | - Lonie R. Salkowski
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Radiology, Madison, Wisconsin, United States
| | - Patricia J. Keely
- University of Wisconsin–Madison, Department of Cell and Regenerative Biology, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Timothy J. Hall
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Walter F. Block
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Radiology, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| | - Kevin W. Eliceiri
- Morgridge Institute for Research, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Laboratory for Optical and Computational Instrumentation, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Medical Physics, Madison, Wisconsin, United States
- University of Wisconsin–Madison, Department of Biomedical Engineering, Madison, Wisconsin, United States
| |
Collapse
|
25
|
Ex Vivo Assessment of Coronary Atherosclerotic Plaque by Grating-Based Phase-Contrast Computed Tomography: Correlation With Optical Coherence Tomography. Invest Radiol 2017; 52:223-231. [PMID: 28079701 DOI: 10.1097/rli.0000000000000346] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aim of this study was to determine the diagnostic accuracy of grating-based phase-contrast computed tomography (gb-PCCT) to classify and quantify coronary vessel characteristics in comparison with optical coherence tomography (OCT) and histopathology in an ex vivo setting. MATERIALS AND METHODS After excision from 5 heart specimens, 15 human coronary arteries underwent gb-PCCT examination using an experimental imaging setup consisting of a rotating molybdenum anode x-ray tube, a Talbot-Lau grating interferometer, and a single photon counting detector. Subsequently, all vessels were imaged by OCT and histopathologically processed. Optical coherence tomography, gb-PCCT, and histopathology images were manually matched using anatomical landmarks. Optical coherence tomography and gb-PCCT were reviewed by 2 independent observers blinded to histopathology. Vessel, lumen, and plaque area were measured, and plaque characteristics (lipid rich, calcified, and fibrous) were determined for each section. Measures of diagnostic accuracy were derived, applying histopathology as the standard of reference. RESULTS Of a total of 286 assessed cross sections, 241 corresponding sections were included in the statistical analysis. Quantitative measures derived from gb-PCCT were significantly higher than from OCT (P < 0.001) and were strongly correlated with histopathology (Pearson r ≥0.85 for gb-PCCT and ≥0.61 for OCT, respectively). Results of Bland-Altman analysis demonstrated smaller mean differences between OCT and histopathology than for gb-PCCT and histopathology. Limits of agreement were narrower for gb-PCCT with regard to lumen area, for OCT with regard to plaque area, and were comparable with regard to vessel area. Based on histopathology, 228/241 (94.6%) sections were classified as fibrous, calcified, or lipid rich. The diagnostic accuracy of gb-PCCT was excellent for the detection of all plaque components (sensitivity, ≥0.95; specificity, ≥0.94), whereas the results for OCT showed sensitivities of ≥0.73 and specificities of ≥0.66. CONCLUSIONS In this ex vivo setting, gb-PCCT provides excellent results in the assessment of coronary atherosclerotic plaque characteristics and vessel dimensions in comparison to OCT and histopathology. Thus, the technique may serve as adjunct nondestructive modality for advanced plaque characterization in an experimental setting.
Collapse
|
26
|
Sardanelli F. Trends in radiology and experimental research. Eur Radiol Exp 2017; 1:1. [PMID: 29708170 PMCID: PMC5909338 DOI: 10.1186/s41747-017-0006-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
European Radiology Experimental, the new journal launched by the European Society of Radiology, is placed in the context of three general and seven radiology-specific trends. After describing the impact of population aging, personalized/precision medicine, and information technology development, the article considers the following trends: the tension between subspecialties and the unity of the discipline; attention to patient safety; the challenge of reproducibility for quantitative imaging; standardized and structured reporting; search for higher levels of evidence in radiology (from diagnostic performance to patient outcome); the increasing relevance of interventional radiology; and continuous technological evolution. The new journal will publish not only studies on phantoms, cells, or animal models but also those describing development steps of imaging biomarkers or those exploring secondary end-points of large clinical trials. Moreover, consideration will be given to studies regarding: computer modelling and computer aided detection and diagnosis; contrast materials, tracers, and theranostics; advanced image analysis; optical, molecular, hybrid and fusion imaging; radiomics and radiogenomics; three-dimensional printing, information technology, image reconstruction and post-processing, big data analysis, teleradiology, clinical decision support systems; radiobiology; radioprotection; and physics in radiology. The journal aims to establish a forum for basic science, computer and information technology, radiology, and other medical subspecialties.
Collapse
Affiliation(s)
- Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano and Unit of Radiology, IRCCS Policlinico San Donato, Via Morandi 30, 20097 San Donato Milanese, Milan Italy
| |
Collapse
|
27
|
Arboleda C, Wang Z, Koehler T, Martens G, Van Stevendaal U, Bartels M, Villanueva-Perez P, Roessl E, Stampanoni M. Sensitivity-based optimization for the design of a grating interferometer for clinical X-ray phase contrast mammography. OPTICS EXPRESS 2017; 25:6349-6364. [PMID: 28380987 DOI: 10.1364/oe.25.006349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An X-ray grating interferometer (GI) suitable for clinical mammography must comply with quite strict dose, scanning time and geometry limitations, while being able to detect tumors, microcalcifications and other abnormalities. Such a design task is not straightforward, since obtaining optimal phase-contrast and dark-field signals with clinically compatible doses and geometrical constraints is remarkably challenging. In this work, we present a wave propagation based optimization that uses the phase and dark-field sensitivities as figures of merit. This method was used to calculate the optimal interferometer designs for a commercial mammography setup. Its accuracy was validated by measuring the visibility of polycarbonate samples of different thicknesses on a Talbot-Lau interferometer installed on this device and considering some of the most common grating imperfections to be able to reproduce the experimental values. The optimization method outcomes indicate that small grating pitches are required to boost sensitivity in such a constrained setup and that there is a different optimal scenario for each signal type.
Collapse
|
28
|
Pelzer G, Anton G, Horn F, Rieger J, Ritter A, Wandner J, Weber T, Michel T. A beam hardening and dispersion correction for x-ray dark-field radiography. Med Phys 2017; 43:2774-2779. [PMID: 27277024 DOI: 10.1118/1.4948671] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE X-ray dark-field imaging promises information on the small angle scattering properties even of large samples. However, the dark-field image is correlated with the object's attenuation and phase-shift if a polychromatic x-ray spectrum is used. A method to remove part of these correlations is proposed. METHODS The experimental setup for image acquisition was modeled in a wave-field simulation to quantify the dark-field signals originating solely from a material's attenuation and phase-shift. A calibration matrix was simulated for ICRU46 breast tissue. Using the simulated data, a dark-field image of a human mastectomy sample was corrected for the finger print of attenuation- and phase-image. RESULTS Comparing the simulated, attenuation-based dark-field values to a phantom measurement, a good agreement was found. Applying the proposed method to mammographic dark-field data, a reduction of the dark-field background and anatomical noise was achieved. The contrast between microcalcifications and their surrounding background was increased. CONCLUSIONS The authors show that the influence of and dispersion can be quantified by simulation and, thus, measured image data can be corrected. The simulation allows to determine the corresponding dark-field artifacts for a wide range of setup parameters, like tube-voltage and filtration. The application of the proposed method to mammographic dark-field data shows an increase in contrast compared to the original image, which might simplify a further image-based diagnosis.
Collapse
Affiliation(s)
- Georg Pelzer
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str 1, Erlangen 91058, Germany
| | - Gisela Anton
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str 1, Erlangen 91058, Germany
| | - Florian Horn
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str 1, Erlangen 91058, Germany
| | - Jens Rieger
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str 1, Erlangen 91058, Germany
| | - André Ritter
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str 1, Erlangen 91058, Germany
| | - Johannes Wandner
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str 1, Erlangen 91058, Germany
| | - Thomas Weber
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str 1, Erlangen 91058, Germany
| | - Thilo Michel
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erwin-Rommel-Str 1, Erlangen 91058, Germany
| |
Collapse
|
29
|
Cone-beam micro computed tomography dedicated to the breast. Med Eng Phys 2016; 38:1449-1457. [DOI: 10.1016/j.medengphy.2016.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/23/2016] [Accepted: 09/23/2016] [Indexed: 11/23/2022]
|
30
|
Mettivier G, Fedon C, Di Lillo F, Longo R, Sarno A, Tromba G, Russo P. Glandular dose in breast computed tomography with synchrotron radiation. Phys Med Biol 2015; 61:569-87. [DOI: 10.1088/0031-9155/61/2/569] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Vedantham S, Shi L, Karellas A. Large-angle x-ray scatter in Talbot-Lau interferometry for breast imaging. Phys Med Biol 2014; 59:6387-400. [PMID: 25295630 DOI: 10.1088/0031-9155/59/21/6387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monte Carlo simulations were used to investigate large-angle x-ray scatter at design energy of 25 keV during small field of view (9.6 cm × 5 cm) differential phase contrast imaging of the breast using Talbot-Lau interferometry. Homogenous, adipose and fibroglandular breasts of uniform thickness ranging from 2 to 8 cm encompassing the field of view were modeled. Theoretically determined transmission efficiencies of the gratings were used to validate the Monte Carlo simulations, followed by simulations to determine the x-ray scatter reaching the detector. The recorded x-ray scatter was classified into x-ray photons that underwent at least one Compton interaction (incoherent scatter) and Rayleigh interaction alone (coherent scatter) for further analysis. Monte Carlo based estimates of transmission efficiencies showed good correspondence [Formula: see text] with theoretical estimates. Scatter-to-primary ratio increased with increasing breast thickness, ranging from 0.11 to 0.22 for 2-8 cm thick adipose breasts and from 0.12 to 0.28 for 2-8 cm thick fibroglandular breasts. The analyzer grating reduced incoherent scatter by ~18% for 2 cm thick adipose breast and by ~35% for 8 cm thick fibroglandular breast. Coherent scatter was the dominant contributor to the total scatter. Coherent-to-incoherent scatter ratio ranged from 2.2 to 3.1 for 2-8 cm thick adipose breasts and from 2.7 to 3.4 for 2-8 cm thick fibroglandular breasts.
Collapse
Affiliation(s)
- Srinivasan Vedantham
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
32
|
Yaroshenko A, Hellbach K, Bech M, Grandl S, Reiser MF, Pfeiffer F, Meinel FG. Grating-based X-ray dark-field imaging: a new paradigm in radiography. CURRENT RADIOLOGY REPORTS 2014. [DOI: 10.1007/s40134-014-0057-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Grandl S, Willner M, Herzen J, Sztrókay-Gaul A, Mayr D, Auweter SD, Hipp A, Birnbacher L, Marschner M, Chabior M, Reiser M, Pfeiffer F, Bamberg F, Hellerhoff K. Visualizing typical features of breast fibroadenomas using phase-contrast CT: an ex-vivo study. PLoS One 2014; 9:e97101. [PMID: 24824169 PMCID: PMC4019647 DOI: 10.1371/journal.pone.0097101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/15/2014] [Indexed: 11/29/2022] Open
Abstract
Background Fibroadenoma is the most common benign solid breast lesion type and a very common cause for histologic assessment. To justify a conservative therapy, a highly specific discrimination between fibroadenomas and other breast lesions is crucial. Phase-contrast imaging offers improved soft-tissue contrast and differentiability of fine structures combined with the potential of 3-dimensional imaging. In this study we assessed the potential of grating-based phase-contrast CT imaging for visualizing diagnostically relevant features of fibroadenomas. Materials and Methods Grating-based phase-contrast CT was performed on six ex-vivo formalin-fixed breast specimens containing a fibroadenoma and three samples containing benign changes that resemble fibroadenomas using Talbot Lau interferometry and a polychromatic X-ray source. Phase-contrast and simultaneously acquired absorption-based 3D-datasets were manually matched with corresponding histological slices. The visibility of diagnostically valuable features was assessed in comparison with histology as the gold-standard. Results In all cases, matching of grating-based phase-contrast CT images and histology was successfully completed. Grating-based phase-contrast CT showed greatly improved differentiation of fine structures and provided accurate depiction of strands of fibrous tissue within the fibroadenomas as well as of the diagnostically valuable dilated, branched ductuli of the fibroadenomas. A clear demarcation of tumor boundaries in all cases was provided by phase- but not absorption-contrast CT. Conclusions Pending successful translation of the technology to a clinical setting and considerable reduction of the required dose, the data presented here suggest that grating-based phase-contrast CT may be used as a supplementary non-invasive diagnostic tool in breast diagnostics. Phase-contrast CT may thus contribute to the reduction of false positive findings and reduce the recall and core biopsy rate in population-based screening. Phase-contrast CT may further be used to assist during histopathological workup, offering a 3D view of the tumor and helping to identify diagnostically valuable tissue sections within large tumors.
Collapse
Affiliation(s)
- Susanne Grandl
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
- * E-mail:
| | - Marian Willner
- Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany
| | - Julia Herzen
- Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany
- Institute for Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Anikó Sztrókay-Gaul
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Doris Mayr
- Institute of Pathology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Sigrid D. Auweter
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Hipp
- Institute for Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany
| | - Lorenz Birnbacher
- Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany
| | - Mathias Marschner
- Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany
| | - Michael Chabior
- Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany
| | - Maximilian Reiser
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Franz Pfeiffer
- Department of Physics and Institute of Medical Engineering, Technical University of Munich, Munich, Germany
| | - Fabian Bamberg
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Karin Hellerhoff
- Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|